This study investigates the unsteady MHD free convective Couette flow of viscous incompressible electrically conducting fluid between two infinite vertical porous plates in the presence of transverse magnetic field and thermal radiation. Solutions for time dependent energy and momentum equations are obtained by the implicit finite difference method. To check the accuracy of the numerical solutions, steady state solutions for energy and momentum equations are obtained by using the perturbation method. The effect of various parameters controlling the physical situation is discussed with the aid of line graphs. Significant results from this study are that both velocity and temperature increase with the increase in thermal radiation parameter and time. A series of numerical experiments show that steady state velocity and temperature occur when the dimensionless time approaches the values of Prandtl number of the fluid. During the course of numerical computation, an excellent agreement was found between unsteady and steady state solutions at large value of time. ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
In this paper, the steady/transient magnetohydrodynamics heat transfer within a radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by the perturbation and finite difference methods, respectively. The heat transfer mechanism of the r
The study investigates the interaction of free convective flow with thermal radiation and variable pressure on natural convective heat and mass transfer fluid flow in porous medium. Solutions for time dependent energy, concentration and momentum equations were obtained by the perturbation series method after transforming into ordinary differential equations. The effect of various flow parameters such as: suction/injection ( δ) radiation (R ) magnetic field (M ) heat source (S ) chemical reaction ( Rc) on the skin friction, rate of heat transfer, velocity, temperature, and concentration profile influencing the physical situation were discussed with the aid of line graphs.
Keywords: Thermal Radiation, Variable pressure, Perturbation, Natural Convection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.