The process of bacterial redistribution in a cylindrical pore filled with an attractant has been considered. The attractant concentration decreases linearly along the pore, and the redistribution of bacteria occurs due to their diffusion (the motion of bacteria along the gradient of their concentration) and chemotaxis (the motion of bacteria along the gradient of attractant concentration). The influence of a spatial confinement on the bacterial distribution in the pore is analyzed. It is shown that if the pore wall is "repelling" for bacteria, the spatial confinement can change the bacterial distribution. In particular, as the pore radius decreases, the chemotaxic effect becomes weaker. The non-uniformity of a bacterial distribution in the system is estimated. The chemotaxis sensitivity function (the deviation of the ratio between the local average bacterial concentration and the average bacterial concentration over the whole system from unity) is calculated, and its dependence on the attractant concentration at the system ends and on the pore size is determined. K e y w o r d s: chemotaxis, attractant, bacterium, diffusion, cylindrical pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.