This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for spatial objects is based on the solution conjugate problem of heat exchange by the control volume method in the open integrated platform for numerical simulation of continuum mechanics problems (openFoam). The calculation results for gas-dynamic and thermal processes in the power plant with a four-nozzle cover are presented. The analysis of gas-dynamic parameters and thermal flows near the nozzle cover, depending on the canal geometry, is given. The topological features of the flow structure and thermophysical parameters near the nozzle cap were studied. For the first time, the transformation of topological features of the flow structure in the pre-nozzle volume at changes in the mass channel’s geometry is revealed, described, and analyzed. The dependence of the Nusselt number in the central point of stagnation on the time of the power plants operation is revealed.
Рассматриваются вопросы численного моделирования процессов нестационарной пространственной газодинамики в предсопловом объеме камеры сгорания энергетической установки с цилиндрическо-щелевой формой канала при движении поверхности массоподвода. Приводятся результаты расчетов газодинамических и тепловых процессов в ЭУ с четырехсопловой крышкой.
The paper deals with the numerical simulation of the flow of thermally conductive viscous gaseous combustion products in the flow paths of a power plant. The influence of the shape of the mass supply surface on the gas dynamics and heat exchange near the recessed nozzle of the power plant is investigated. The coupled problem of heat exchange is solved by the method of control volumes. It is shown that the compensator geometry determines the localization of both the topological features of the flow near the recessed nozzle and the position of local maximums of the heat transfer coefficient. It has been revealed that The use of a channel with a star-shaped cross section and a triangular form of compensator rays leads to an intensification of heat exchange processes near a recessed nozzle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.