a b s t r a c tIrradiation responses of U-Mo/Al dispersion fuel have been investigated by irradiation with 84 MeV Xe 26+ ions. Dispersion fuels fabricated with uncoated and ZrN-coated fuel particles were irradiated to various doses at $350°C. The highest dose achieved was 2.9 Â 10 17 ions/cm 2 ($1200 displacement per atom (dpa)). Following the irradiation, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) experiments were carried out to characterize the microstructures of the irradiated samples. The post irradiation examinations (PIE) revealed that: (1) crystalline interdiffusion product (UMo)Al x developed at locations where no coating or compromised coating layer is present; (2) intact ZrN coating layers effectively blocked the interdiffusion between U-Mo and Al; (3) SEM-observable Xe bubbles distributed along grain/cell boundaries in U-Mo; and (4) gas bubble interlinkage was observed at a dose of 2.9 Â 10 17 ions/cm 2 .
U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.
In order to overcome a lack of experimental information on values for key materials properties and kinetic coefficients, a multiscale modeling approach is applied to defect behavior in irradiated Mo where key materials properties, such as point defect (vacancy and interstitial) migration enthalpies as well as kinetic factors such as dimer formation, defect recombination, and self interstitial-interstitial loop interaction coefficients, are obtained by molecular dynamics calculations and implemented into rate-theory simulations of defect behavior. The multiscale methodology is validated against interstitial loop growth data obtained from electron irradiation of pure Mo. It is shown that the observed linear behavior of the loop diameter vs. the square root of irradiation time is a direct consequence of the 1D migration of self-interstitial atoms.
U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions.Therefore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.