In the present scenario of bulk manufacturing where Metal Removal Rate (MRR), Chip Thickness Ratio (CTR) and Surface Roughness (SR) is of significant importance in manufacturing the component using CNC (computer numerical controlled) machines. Nine experiments were conducted based on orthogonal array. General linear model has been generated for all the three output parameters such as (MRR, Chip Thickness Ratio surface roughness) versus input parameters (speed, time, depth of cut). The statistical method called the analysis of variance (ANOVA) is applied to find the critical factor. The Main effects of S/N ratio values are found and plotted in the form of graph. The optimized value is found for speed, time, and depth of cut by using “MINITAB” software. By using this optimized value the efficient metal cutting can be done in commercial mild steel.
Solid-state friction stir welding (FSW) is a sophisticated technique that can join materials that are similar and different without significantly affecting the properties of the base materials. The purpose of this study is to enhance the tensile strength, micro-hardness, and fatigue strength of the copper (C1100) butt-joints reinforced with B4C nanoparticles. The effects of B4C nanoparticle inclusion on the mechanical properties of the fabricated joints are studied in correlation with the microstructural features of the welded joints using optical microscopy. The joints are fabricated on a specialized friction stir welding machine (VMC-TC-1200) with a square pin-profiled tool. Defect-free joints of 3 mm copper plates are produced at the constant tool rotational speed of 1100 rpm, welding speed of 30 mm/min, plunge depth of 0.25 mm, and constant axial stress of 5 kN. B4C particles of 1, 2, 3, and 4wt% are added to the joints and their properties are compared with the joints produced without the inclusion of B4C particles to study the effects of the addition of nanoparticles. The joints attained a maximum micro-hardness of 123 HV, fatigue strength of 159 MPa, and tensile strength of 203 MPa with the addition of 3% B4C. Microstructural investigations performed through an optical microscope and scanning electron microscope (SEM) indicated the presence of homogeneously distributed B4C particles engulfed by finely refined grains. The thermal conductivity of the B4C particles facilitated the smooth flow of copper around the particles by forming a thin lubricating layer, thus improving the properties of the joints. Furthermore, this study has established that the addition of B4C particles is an effective and eco-friendly method of producing strong joints which could be used for industrial and defense applications.
An experimental investigation was carried out to comprehend the impact of speed of traverse of tool on tensile strength and micro-structural peculiarities of attained joints during friction stir welding of Cu alloy namely CDA 101 flat plates, with other parameters namely spinning speed of tool (1100 rpm) and downward force (6kN) being constant. A tool with cylindrical tapered pin geometry was made to traverse at distinctive speeds from 20 mm/min to 45 mm/min. It was observed that, the CDA 101 joints fabricated at 20 mm/min was found to be entirely free flaws, with joints fabricated at other speeds of tool traverse possessing several weld flaws. Grains in the center of the zone of stir of the joints obtained at 20 mm/min was uniformly distributed and homogeneous, due to the experience of the exemplary volume of frictional heat and sufficient amount of stirring force. Highest tensile strength of 200.65 MPa (nearly 85.38% of base metal)was exhibited by joint attained at 20 mm/min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.