This work covers the mathematical modeling of ultrafiltration with immobile membranes for physiologically-active of methoxyanabasine C 11 H 16 N 2 O polymer solution. Methoxyanabasine is used as low toxic antineoplastic drug. On the basis of theoretical and experimental analysis of mass transfer and hydrodynamics, it is offered the mathematical model of permeability of membranes at an ultrafiltration of polymer solutions. Further the formulas for determination of factor of concentration polarization and ultrafiltration selectivity are calculated.
This work is aimed at solving the problem on sorption purification of waste gases from sulfur dioxide on the wastes of phosphoric industry, i.e. thermophosphorus slags (TPhS). The solution of this problem is implemented by the new technical result, which is caused in increasing the depth of treatment by sulfur dioxide. Essential features of the claimed technical solution are the sorption purification of sulfur dioxide from waste gases on sorbent, containing layer of the granular TPhS. The experimental results showed that the highest activity of the sorbent, calcined at 500°C, is manifested at a temperature of sorption of 200 °C. With further increase of the process temperature, the degree of sorption does not change and duration of work of the sorbent is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.