Childhood metabolic syndrome (MetS) is prevalent around the world and is associated with a high likelihood of suffering from severe diseases such as cardiovascular disease later in adulthood. MetS is associated with genetic susceptibility that involves gene polymorphisms. The fat mass and obesity-associated gene (FTO) encodes an RNA N6-methyladenosine demethylase that regulates RNA stability and molecular functions. Human FTO contains genetic variants that significantly contribute to the early onset of MetS in children and adolescents. Emerging evidence has also uncovered that FTO polymorphisms in intron 1, such as rs9939609 and rs9930506 polymorphisms, are significantly associated with the development of MetS in children and adolescents. Mechanistic studies reported that FTO polymorphisms lead to aberrant expressions of FTO and the adjacent genes that promote adipogenesis and appetite and reduce steatolysis, satiety, and energy expenditure in the carriers. The present review highlights the recent observations on the key FTO polymorphisms that are associated with child and adolescent MetS with an exploration of the molecular mechanisms underlying the development of increased waist circumference, hypertension, and hyperlipidemia in child and adolescent MetS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.