We present results on the electroexcitation of the low mass resonances (1232)P 33 , N (1440)P 11 , N (1520)D 13 , and N (1535)S 11 in a wide range of Q 2 . The results were obtained in the comprehensive analysis of data from the Continuous Electron Beam Accelerator Facility (CEBAF) large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility (JLab) on differential cross sections, longitudinally polarized beam asymmetries, and longitudinal target and beam-target asymmetries for π electroproduction off the proton. The data were analyzed using two conceptually different approaches-fixed-t dispersion relations and a unitary isobar model-allowing us to draw conclusions on the model sensitivity of the obtained electrocoupling amplitudes. The amplitudes for the (1232)P 33 show the importance of a meson-cloud contribution to quantitatively explain the magnetic dipole strength, as well as the electric and scalar quadrupole transitions. They do not show any tendency of approaching the pQCD regime for Q 2 6 GeV 2 . For the Roper resonance, N (1440)P 11 , the data provide strong evidence that this state is a predominantly radial excitation of a three-quark (3q) ground state. Measured in pion electroproduction, the transverse helicity amplitude for the N (1535)S 11 allowed us to obtain the branching ratios of this state to the πN and ηN channels via comparison with the results extracted from η electroproduction. The extensive CLAS data also enabled the extraction of the γ * p → N (1520)D 13 and N (1535)S 11 longitudinal helicity amplitudes with good precision. For the N (1535)S 11 , these results became a challenge for quark models and may be indicative of large meson-cloud contributions or of representations of this state that differ from a 3q excitation. The transverse amplitudes for the N (1520)D 13 clearly show the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q 2 > 1 GeV 2 , confirming a long-standing prediction of the constituent quark model.
We studied simultaneously the 4 He(e, e p), 4 He(e, e pp), and 4 He(e, e pn) reactions at Q 2 = 2 (GeV/c) 2 and xB > 1, for an (e, e p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (N N ) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in 4 He and discussed in the context of probing the elusive repulsive N N force.
High-statistics differential cross sections for the reactions γp → pη and γp → pη have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The η results are the most precise to date and provide the largest energy and angular coverage. The η measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the η measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.