We studied simultaneously the 4 He(e, e p), 4 He(e, e pp), and 4 He(e, e pn) reactions at Q 2 = 2 (GeV/c) 2 and xB > 1, for an (e, e p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (N N ) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in 4 He and discussed in the context of probing the elusive repulsive N N force.
We have measured the beam-normal single-spin asymmetry An in the elastic scattering of 1-3 GeV transversely polarized electrons from 1 H and for the first time from 4 He, 12 C, and 208 Pb. For 1 H, 4 He and 12 C, the measurements are in agreement with calculations that relate An to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the 208 Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new An measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.
Double-spin asymmetries and absolute cross sections were measured at large Bjorken x ð0.25 ≤ x ≤ 0.90Þ, in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3 He target. In this dedicated experiment, the spin structure function g 3 He 2 was determined with precision at large x, and the neutron twist-3 matrix element d n 2 was measured at hQ 2 i of 3.21 and 4.32 GeV 2 =c 2 , with an absolute
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.