Hypotension is a frequent side-effect of cancer biotherapies with cytokines. Cytokine-induced hypotension would mainly depend on the stimulation of nitric oxide (NO) production, which represents the most effective endogenous vasodilator. Moreover, it has been proven that both biological activity and toxicity of cytokines are influenced by the psychoneuroendocrine system, in particular by the pineal hormone melatonin. To investigate the possible modulatory effect of melatonin on cytokine cardiovascular toxicity, we evaluated the influence of a concomitant melatonin administration on interleukin-2(IL-2)- and tumour-necrosis-factor-alpha(TNF)-induced hypotension in advanced cancer patients. The study included 116 patients with advanced solid tumour, for whom no effective standard anticancer therapy was available, who underwent cancer biotherapy with IL-2 (3 x 10(6) IU/ day s.c. every day, 6 days/week for 4 weeks) or with TNF (0.75 mg/day i.v. for 5 days) as compassionate treatment for their disease. Patients were randomized to be treated with or without a concomitant melatonin administration (40 mg/day orally in the evening, starting 7 days prior to cytokine injection). The occurrence of hypotension was significantly less frequent in patients concomitantly treated by melatonin than in those who received the cytokine alone, during either IL-2: or TNF immunotherapy (IL-2; 11/45 versus 2/46, P < 0.05; TNF: 10/23 versus 1/12, P < 0.01). This study shows that melatonin may prevent hypotension occurring during cancer immunotherapy with IL-2 or TNF. Since the pineal hormone has appeared to inhibit the activity of NO synthase from the endothelial cells, we suggest that melatonin may prevent cytokine-induced hypotension by inhibiting NO production, which plays an essential role in inducing hypotension during IL-2 and TNF biotherapies.
The A1 and A2 brainstem noradrenergic cell groups project to the hypothalamic paraventricular nucleus (PVN), which is involved in integrating the stress response. Bi-directional communication between the brain and immune system is well established, with both neuroendocrine and immune responses being activated by lipopolysaccharide (LPS). The mechanisms underlying such activation and differences between alternative routes of administration remain unclear. We examined activation of the PVN and A1/A2 cell groups, by assessing c-fos mRNA, or counting Fos-positive neurons in either the PVN or in brainstem A1/A2 cell groups 3 h after intracerebroventricular (i.c.v.) LPS, in control and adrenalectomized (ADX) rats. We also measured corticotropin-releasing hormone (CRH) mRNA in the PVN, and plasma corticosterone (CORT) levels. A group of ADX/CORT-replaced animals received i.c.v. LPS, and CRH mRNA and Fos peptide in the PVN were analysed. ADX increased CRH mRNA in the PVN, as did LPS, but no enhancement of this response was seen in LPS/ADX animals. C-fos mRNA also increased in both the PVN and the A2 cell group following LPS, but this response was potentiated by ADX. Fos peptide-containing cells increased in the PVN and A2 following LPS, and this change was amplified by ADX. Only 11.25% of Fos was found in DBH-positive (putative noradrenergic) neurons, suggesting activation of neurons containing other transmitters. ADX/LPS/CORT animals showed numbers of Fos neurons in the brainstem, and CRH mRNA levels in the PVN which were comparable to intact/LPS animals. Central LPS activates the hypothalamo-pituitary-adrenal axis, a process mediated partly by brainstem noradrenergic neurons, suggesting the involvement of afferent/efferent pathways within the brain. Peripheral administration of LPS involves activation of vagal inputs leading to the nucleus tractus solitarius. We suggest that centrally administered LPS activates the A2 cell group by a mechanism independent of the vagus. In the absence of CORT, despite the lack of a CRH mRNA response, an exaggerated c-fos and peptide response to LPS is observed, which is reversed following CORT pretreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.