Interferon-tau (IFN ) acts locally on the endometrium to suppress estrogen and oxytocin receptor expression and block luteolysis in ruminants. Systemic administration of conceptus homogenates or recombinant ovine IFN does not block luteolysis or enhance pregnancy rates in sheep or cattle, respectively. However, IFN up-regulates expression of the antiviral protein Mx throughout the entire uterine wall during early pregnancy. These studies determined if conceptus-derived IFN also up-regulates Mx expression in components of the circulating immune system that migrate through the endometrial wall. In experiment one, peripheral blood mononuclear cells (PBMC) were isolated from ewes at D26 post-artificial insemination (AI) and Mx mRNA levels examined by Northern and slot-blot hybridization. Pregnancy resulted in a two-fold increase in Mx mRNA levels compared to bred, non-pregnant ewes at D26. In experiment two, PBMC were isolated from ewes at AI, and every three days from D9 to D30. Results showed a four-fold increase in Mx mRNA levels in PBMC from pregnant versus bred, non-pregnant ewes at D15. Increased Mx mRNA, which remained elevated through D30, was accompanied by increased levels of Mx protein. These results show that pregnancy recognition signaling rapidly induces Mx gene expression in PBMC, and are the first to suggest that IFN activates gene expression in components of the circulating immune system.
Pregnancy and interferon-tau (IFN tau) upregulate uterine Mx gene expression in ewes; however, the only known role for Mx is in the immune response to viral infection. We hypothesize that Mx functions as a conceptus-induced component of the anti-luteolytic mechanism and/or regulator of endometrial secretion or uterine remodeling during early pregnancy. This study was conducted to determine the effects of early pregnancy on uterine Mx expression in domestic farm species with varied mechanisms of pregnancy recognition. Endometrium from cows, gilts, and mares was collected during the first 20 d of the estrous cycle or pregnancy, and total messenger RNA (mRNA) and protein were analyzed for steady-state levels of Mx mRNA and protein. Northern blot analysis of Mx mRNA detected an approximately 2.5 Kb of mRNA in endometrium from each species. In pregnant cows, steady-state levels of Mx mRNA increased 10-fold (P < 0.05) above levels observed in cyclic cows by d 15 to 18. In cyclic gilts, slot blot analysis indicated that endometrial Mx mRNA levels did not change between d 5 and 18 of the cycle. However, in pregnant gilts, Mx levels tended (P = 0.06) to be elevated two-fold on d 16 only, and in situ hybridization indicated that this increase occurred in the stroma. In mares, Mx mRNA was low, but detectable, and did not change between ovulation (d 0) and d 20, regardless of reproductive status. Western blot analysis revealed multiple immunoreactive Mx protein bands in each species. One band was specific to pregnancy in cows. As in ewes, in situ hybridization analysis indicated that Mx mRNA was strongly expressed in the luminal epithelium, stroma, and myometrium by d 18 in cows. However, on d 14 in gilts, Mx was expressed primarily in the stroma, and on d 14 in mares, low levels of Mx expression were confined largely to the luminal epithelium. The uteruses of cows, gilts, and mares express Mx, and expression is upregulated during pregnancy in cows and gilts--animals whose conceptuses secrete interferons during early pregnancy, but that possess different mechanisms for pregnancy recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.