Warming climate is predicted to promote cyanobacterial blooms but the toxicity of cyanobacteria under global warming is less well studied. We tested the hypothesis that raising temperature may lead to increased growth rates but to decreased microcystin (MC) production in tropical Microcystis strains. To this end, six Microcystis strains were isolated from different water bodies in Southern Vietnam. They were grown in triplicate at 27 °C (low), 31 °C (medium), 35 °C (high) and 37 °C (extreme). Chlorophyll-a-, particle- and MC concentrations as well as dry-weights were determined. All strains yielded higher biomass in terms of chlorophyll-a concentration and dry-weight at 31 °C compared to 27 °C and then either stabilised, slightly increased or declined with higher temperature. Five strains easily grew at 37 °C but one could not survive at 37 °C. When temperature was increased from 27 °C to 37 °C total MC concentration decreased by 35% in strains with MC-LR as the dominant variant and by 94% in strains with MC-RR. MC quota expressed per particle, per unit chlorophyll-a and per unit dry-weight significantly declined with higher temperatures. This study shows that warming can prompt the growth of some tropical Microcystis strains but that these strains become less toxic.
Climate change and human activities induce an increased frequency and intensity of cyanobacterial blooms which could release toxins to aquatic ecosystems. Zooplankton communities belong to the first affected organisms, but in tropical freshwater ecosystems, this issue has yet been poorly investigated. We tested two questions (i) if the tropical Daphnia lumholtzi is capable to develop tolerance to an ecologically relevant concentration of purified microcystin-LR and microcystins from cyanobacterial extract transferable to F1 and F2 generations? And (ii) would F1 and F2 generations recover if reared in toxin-free medium? To answer these questions, we conducted two full factorial mutigenerational experiments, in which D. lumholtzi was exposed to MC-LR and cyanobacterial extract at the concentration of 1 μg L microcystin continuously for three generations. After each generation, each treatment was spit into two: one reared in the control (toxin free) while the other continued in the respective exposure. Fitness-related traits including survival, maturity age, body length, and fecundity of each D. lumholtzi generation were quantified. Though there were only some weak negative effects of the toxins on the first generation (F0), we found strong direct, accumulated and carried-over impacts of the toxins on life history traits of D. lumholtzi on the F1 and F2, including reductions of survival, and reproduction. The maturity age and body length showed some inconsistent patterns between generations and need further investigations. The survival, maturity age (for extract), and body length (for MC-LR) were only recovered when offspring from toxin exposed mothers were raised in clean medium for two generations. Chronic exposure to long lasting blooms, even at low density, evidently reduces survival of D. lumholtzi in tropical lakes and reservoirs with ecological consequences.
Studies on cyanobacteria in Vietnam are limited and mainly restricted to large reservoirs. Cyanobacterial blooms in small water bodies may pose a health risk to local people. We sampled 17 water bodies in the vicinity of urban settlements throughout the Mekong basin and in southeast Vietnam. From these, 40 water samples were taken, 24 cyanobacterial strains were isolated and 129 fish, 68 snail, 7 shrimp, 4 clam, and 4 duck samples were analyzed for microcystins (MCs). MCs were detected up to 11,039 µg/L or to 4033 µg/g DW in water samples. MCs were detected in the viscera of the animals. MC-LR and MC-RR were most frequently detected, while MC-dmLR, MC-LW, and MC-LF were first recorded in Vietnam. Microcystis was the main potential toxin producer and the most common bloom-forming species. A potential health hazard was found in a duck–fish pond located in the catchment of DauTieng reservoir and in the DongNai river where raw water was collected for DongNai waterwork. The whole viscera of fish and snails must be completely removed during food processing. Cyanobacterial monitoring programs should be established to assess and minimize potential public health risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.