In this paper, an effective method, named the brightness preserving weighted dynamic range histogram equalization (BPWDRHE), is proposed for contrast enhancement. Although histogram equalization (HE) is a universal method, it is not suitable for consumer electronic products because this method cannot preserve the overall brightness. Therefore, the output images have an unnatural looking and more visual artifacts. An extension of the approach based on the brightness preserving bi-histogram equalization method, the BPWDRHE used the weighted within-class variance as the novel algorithm in separating an original histogram. Unlike others using the average or the median of gray levels, the proposed method determined gray-scale values as break points based on the within-class variance to minimize the total squared error of each sub-histogram corresponding to the brightness shift when equalizing them independently. As a result, the contrast of both overall image and local details was enhanced adequately. The experimental results are presented and compared to other brightness preserving methods.
CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.