Highlights Viral infections such as SARS-CoV-2 (COVID-19), influenza, RSV, and many others are usually associated with increased oxidative stress leading to oxidative cellular and tissue damage resulting in multi-organ failure. Vitamin C has demonstrated favorable therapeutic properties safety profile throughout a wide range of clinical application. Administration of high dose of vitamin C as therapeutic agent can favorably impact patient with viral pneumonia and ARDS in severe SAR-CoV-2 infected patients by decreasing inflammation, pathogens infectiveness and virulence, optimizing immune defense, reducing tissues and organs injuries and improving the overall outcome of the disease. Other nutraceutical antioxidants that widely available as OTC drugs or food supplements can be used to improve redox balance and reduce the tissue damages in patients with viral pneumonia and ARDS Further clinical trials are needed to validate the effectiveness and develop an optimal therapeutic protocol for high dose of vitamin C treatment for pneumonia and ARDS in patients with viral infection.
BackgroundThe heterogeneous and dynamic tumor microenvironment has significant impact on cancer cell proliferation, invasion, drug response, and is probably associated with entering dormancy and recurrence. However, these complex settings are hard to recapitulate in vitro.MethodsIn this study, we mimic different restriction forces that tumor cells are exposed to using a physiologically relevant 3D model with tunable mechanical stiffness.ResultsBreast cancer MDA-MB-231, colon cancer HCT-116 and pancreatic cancer CFPAC cells embedded in the stiffer gels exhibit a changed morphology and cluster formation, prolonged doubling time, and a slower metabolism rate, recapitulating the pathway from competency to dormancy. Altering environmental restriction allows them to re-enter and exit dormant conditions and change their sensitivities to drugs such as paclitaxol and gemcitabine. Cells surviving drug treatments can still regain competent growth and form tumors in vivo.ConclusionWe have successfully developed an in vitro 3D model to mimic the effects of matrix restriction on tumor cells and this high throughput model can be used to study tumor cellular functions and their drug responses in their different states. This all in one platform may aid effective drug development.
Zinc is a vital nutrient for human health. Over 300 biological functions in the human body rely on zinc. Even though zinc is incredibly important for our physiology and pathology, our current understanding of zinc, as it relates to tumor cell biology, leaves much to be desired. As with other natural, nonpatentable, and inexpensive agents, zinc remains a subject of explorative research for scientific interest rather than being promoted for practical use. To date, more than 5000 studies with the keywords 'zinc' and 'cancer' have been indexed in the Web of Knowledge portal. Although the numbers of papers have increased 2.5-fold during the last decade, these vast research data have not generated a single recommendation for the incorporation of zinc use in cancer prevention and treatment. In this review, we intend to analyze the current available research data and epidemiological and clinical evidence on the role of zinc in human cancer prevention and treatment. We focus on the cancers - prostate, breast, and pancreatic - for which the most basic and epidemiological studies with zinc have been carried out. The pancreas, and prostate and mammary glands are secretory tissues that have unusual zinc requirements; they tightly regulate zinc metabolism through integration of zinc import, sequestration, and export mechanisms. This suggests to us that zinc could play an important role in the physiology and pathology of these organs. The objective of this review was to stimulate more interest in the research field, focusing on the role of zinc as a possible preventive and therapeutic agent and the accelerated application of this inexpensive and easily accessible nutrient in clinical oncology.
Pain is a major concern of cancer patients and a significant problem for therapy. Pain can become a predominant symptom in advanced cancers. In this open-label clinical study, the authors have treated 26 cancer patients who have been declared as terminal without the option of conventional treatment. These patients suffered from high levels of pain that was poorly managed by all available interventional approaches recommended by World Health Organization (WHO) guideline. The results indicate that intravenous infusion of dimethyl sulfoxide (DMSO) and sodium bicarbonate (SB) solution can be a viable, effective, and safe treatment for refractory pain in cancer patients. These patients had pain due to the disease progression and complication of chemotherapy and radiation. Moreover, the preliminary clinical outcome of 96-day follow-up suggests that the application of DMSO and SB solution intravenously could lead to better quality of life for patients with nontreatable terminal cancers. The data of this clinical observation indicates that further research and application of the DMSO and SB combination may help the development of an effective, safe, and inexpensive therapy to manage cancer pain.
The pandemic of novel coronavirus caused COVID-19 had resulted in a high number of hospitalizations and deaths and caused a devastating toll on human and society health. The symptoms of the infected patients vary significantly, from life-threatening to mild or even asymptomatic. This clinical observation led to hypothesize on the critical role of host innate immunity in the disease development and progression. As the first defense barrier against microorganisms, the innate immune reaction determines not only the viral infection rate but also immune-mediated response. Therefore, promote healthy behaviors to enhance innate immunity with functional food and nutritional agents may be a rational strategy for minimizing damages caused by viruses to global health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.