We present a nested Monte Carlo (NMC) approach implemented on graphics processing units (GPUs) to X-valuation adjustments (XVAs), where X ranges over C for credit, F for funding, M for margin, and K for capital. The overall XVA suite involves five compound layers of dependence. Higher layers are launched first, and trigger nested simulations on-the-fly whenever required in order to compute an item from a lower layer. If the user is only interested in some of the XVA components, then only the sub-tree corresponding to the most outer XVA needs be processed computationally. Inner layers only need a square root number of simulation with respect to the most outer layer. Some of the layers exhibit a smaller variance. As a result, with GPUs at least, error-controlled NMC XVA computations are doable. But, although NMC is naively suited to parallelization, a GPU implementation of NMC XVA computations requires various optimizations. This is illustrated on XVA computations involving equities, interest rate, and credit derivatives, for both bilateral and central clearing XVA metrics.
We consider the problem of the numerical computation of its economic capital by an insurance or a bank, in the form of a value-at-risk or expected shortfall of its loss over a given time horizon. This loss includes the appreciation of the mark-to-model of the liabilities of the firm, which we account for by nested Monte Carlo à la Gordy and Juneja [17] or by regression à la Broadie, Du, and Moallemi [10]. Using a stochastic approximation point of view on value-at-risk and expected shortfall, we establish the convergence of the resulting economic capital simulation schemes, under mild assumptions that only bear on the theoretical limiting problem at hand, as opposed to assumptions on the approximating problems in [17] and [10]. Our economic capital estimates can then be made conditional in a Markov framework and integrated in an outer Monte Carlo simulation to yield the risk margin of the firm, corresponding to a market value margin (MVM) in insurance or to a capital valuation adjustment (KVA) in banking parlance. This is illustrated numerically by a KVA case study implemented on GPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.