International audienceWe provide an economic interpretation of the practice consisting in incorporating risk measures as constraints in an expected prospect maximization problem. For what we call the infimum of expectations class of risk measures, we show that if the decision maker (DM) maximizes the expectation of a random prospect under constraint that the risk measure is bounded above, he then behaves as a generalized expected utility maximizer in the following sense. The DM exhibits ambiguity with respect to a family of utility functions defined on a larger set of decisions than the original one; he adopts pessimism and performs first a minimization of expected utility over this family, then performs a maximization over a new decisions set. This economic behaviour is called maxmin under risk and studied by Maccheroni (Econ Theory 19:823-831, 2002). As an application, we make the link between an expected prospect maximization problem, subject to conditional value-at-risk being less than a threshold value, and a non-expected utility economic formulation involving loss aversion -type utility functions
This paper introduces a new type of risk measures, namely regime switching entropic risk measures, and study their applicability through simulations. The state of the economy is incorporated into the entropic risk formulation by using a Markov chain. Closed formulae of the risk measure are obtained for futures on crude oil derivatives. The applicability of these new types of risk measures is based on the study of the risk aversion parameter and the convenience yield. The numerical results show a term structure and a mean-reverting behavior of the convenience yield.
This article presents a systematic approach to analysing linear integer multi-objective optimization problems with uncertainty in the input data. The goal of this approach is to provide decision makers with meaningful information to facilitate the selection of a solution that meets performance expectations and is robust to input parameter uncertainty. Standard regularization techniques often deal with global stability concepts. The concept presented here is based on local quasi-stability and includes a local regularization technique that may be used to increase the robustness of any given efficient solution or to transform efficient solutions that are not robust (i.e. unstable), into robust solutions. An application to a multi-objective problem drawn from the mining industry is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.