PurposeMovies critics believe that the diversity of Iranian cinematic genres has decreased over time. The paper aims to answer the following questions: What is the impact of the continuous cooperation between the key nodes on the audience's taste, uniformity of the cinematic genres and the box office? Is there any relationship between the importance of actors in the actors' network and their popularity?Design/methodology/approachIn the artistic world, artists' relationships lead to a network that affects individuals' commercial or artistic success and defines the artwork's value. To study the issue that the diversity of Iranian cinematic genres has decreased over time, the authors utilized social network analysis (SNA), in which every actor is considered a node, and its collaboration with others in the same movies is depicted via edges. After preparing the desired dataset, networks were generated, and metrics were calculated. First, the authors compared the structure of the network with the box office. The results illustrated that the network density growth negatively affects box office. Second, network key nodes were identified, their relationships with other actors were inspected using the Apriori algorithm to examine the density cause and the cinematic genre of key nodes, and their followers were investigated. Finally, the relationship between the actors' Instagram follower count and their importance in the network structure was analyzed to answer whether the generated network is acceptable in society.FindingsThe social problem genre has stabilized due to continuous cooperation between the core nodes because network density negatively impacts the box office. As well as, the generated network in the cinema is acceptable by the audience because there is a positive correlation between the importance of actors in the network and their popularity.Originality/valueThe novelty of this paper is investigating the issue raised in the cinema industry and trying to inspect its aspects by utilizing the SNA to deepen the cinematic research and fill the gaps. This study demonstrates a positive correlation between the actors' Instagram follower count and their importance in the network structure, indicating that people follow those central in the actors' network. As well as investigating the network key nodes with a heuristic algorithm using coreness centrality and analyzing their relationships with others through the Apriori algorithm. The authors situated the analysis using a novel and original dataset from the Iranian actors who participated in the Fajr Film Festival from 1998 to 2020.
Currently, Customers are struggling to retain their business in today’s competitive markets. Thus, the issue of customer churn becomes a significant challenge for the industries. In order to achieve this, it is vital to have an efficient churn prediction system. In this paper, we discuss methods for reducing features using PCA, Autoencoders, LDA, T-SNE, and Xgboost. In this paper, a model for predicting light GBM churn is proposed. The model consists of five steps. The first step is to preprocess the data so that missing and corrupt values can be handled and the data can be scaled. Secondly, implementing a comprehensive feature reduction system based on popular algorithms reduces the features and selects the most suitable one. In the third step, light GBM’s hyperparameter is tuned using Bayesian hyperparameter optimization and genetic optimization algorithms. Lastly, interpreting the model and evaluating the impact of the features on model outputs by using the SHAP method, and finally ranking the churners by customer lifetime value. Aside from evaluating and choosing the best feature reduction methods, the proposed method is also evaluated using four famous datasets. It outperforms other ensemble and ML algorithms like AdaBoost, SVM, and decision tree on over seven evaluation metrics: accuracy, area under the curve (AUC), Kappa, Mathews correlation coefficient (MCC), Brier score, F1 score, and EMPC. In light of the evaluation metrics, our model shows a significant improvement in handling imbalanced datasets in churn prediction. Finally, in this paper, interpretability and how the features affect the model’s output are presented by the SHAP method. Then CLV ranking is suggested for better decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.