SUMMARYRecently, the shear behavior of a cohesionless granular strip that is in contact with a very rough surface of a moving bounding structure has been numerically investigated by several authors by using a micropolar hypoplastic continuum model. It was shown that the micropolar boundary conditions assumed along the interface have a strong influence on the deformations within the granular layer. In previous investigations, only interface friction angles for very rough bounding structures were assumed. In contrast, the focus of the present paper is on the influence of the interface roughness on the deformation behavior of the granular strip when the interface friction angle is lower than the peak friction angle of the granular material. In addition to the interface friction angle, particular attention is also paid to the influence of the mean grain diameter, the solid hardness, the initial void ratio, and the vertical stress on the maximum horizontal shear displacement within the granular layer before sliding is started.
A numerical study is conducted to investigate the dynamic behavior of earth dams. The numerical investigation employs a fully nonlinear dynamic finite difference analysis incorporating a simple elastic perfectly plastic constitutive model to describe the stress-strain response of the soil and the Rayleigh damping to increase the level of hysteretic damping. The extended Masing rules are implemented into the constitutive model to explain more accurately the soil response under general cyclic loading. The soil stiffness and hysteretic damping change with loading history. The procedures for calibrating the constructed numerical model with centrifuge test data and also a real case history are explained. For the latter, the Long Valley (LV) earth dam subjected to the 1980 Mammoth Lake earthquake as a real case-history is analyzed and the obtained numerical results are compared with the real measurements at the site in both the time and frequency domains. Relatively good agreement is observed between computed and measured quantities. It seems that the Masing rules combined with a simple elasto-plastic model gives reasonable numerical predictions. Afterwards, a comprehensive parametric study is carried out to identify the effects of dam height, input motion characteristics, soil behavior, strength of the shell materials and dam reservoir condition on the dynamic response of earth dams. Three real earthquake records with different levels and peak acceleration values (PGAs) are used as input motions. The results show that the crest acceleration decreases when the dam height increases and no amplification is observed. Further, more inelastic behavior and more earthquake energy absorption are observed in higher dams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.