Betweenness centrality is a network centrality measure based on the amount of shortest paths passing through a given vertex. A graph is betweenness-uniform (BUG) if all vertices have an equal value of betweenness centrality. In this contribution, we focus on betweenness-uniform graphs with betweenness centrality below one. We disprove a conjecture about the existence of a BUG with betweenness value $\alpha$ for any rational number $\alpha$ from the interval $(\sfrac{3}{4}, \infty)$ by showing that only very few betweenness centrality values below $\sfrac{6}{7}$ are attained for at least one BUG. Furthermore, among graphs with diameter at least three, there are no betweenness-uniform graphs with a betweenness centrality smaller than one. In graphs of smaller diameter, the same can be shown under a uniformity condition on the components of the complement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.