The forced heave motion of a dummy ship model with moonpool, including a fixed box-shaped object, was realized experimentally in the Towing tank at MARINTEK. The blockage effect caused by a large object was investigated. Regular and irregular forced heave motions were imposed. In the regular motion tests, four forcing amplitudes, and 11 forcing periods near the piston-mode resonance period were tested. PVC3D (Potential Viscous Code) was used to study the regular heave motion problem numerically. PVC3D is a code developed at MARINTEK, in collaboration with Statoil RDI, which couples a Naviér-Stokes solver with the linear potential flow theory for the free-surface waves. PVC3D has in previous studies proven to be fast, robust and accurate for marine resonance problems. It has not previously been validated for object in moonpool. Here, a validation study is presented. The moonpool response is well predicted by PVC3D both for the case of empty moonpool and moonpool with object. The studied object has a non-negligible blockage effect in resonant condition.
The piston and first sloshing modes of two-dimensional moonpools with recess are investigated. Dedicated forced heave experiments are carried out. Different recess lengths are tested from $1/4$ to $1/2$ of the length of the moonpool at the mean waterline. A theoretical model to calculate the natural frequencies is developed based on linearized potential flow theory and eigenfunction expansion. Two numerical methods are implemented: a boundary element method (BEM) and a Navier–Stokes solver (CFD). Both the BEM and CFD have linearized free-surface and body-boundary conditions. As expected, the BEM over-predicts the moonpool response significantly, in particular at the first sloshing mode. The CFD is in general able to predict the maximum moonpool response adequately, both at the piston and first sloshing modes. Both numerical methods fail to predict the Duffing-type behaviour at the first sloshing mode, due to the linearized free-surface conditions. The Duffing behaviour is more pronounced for the largest recess. The main source of damping in the proximity of the first sloshing mode is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.