The main question we address in this paper is how to use purely textual description of categories with no training images to learn visual classifiers for these categories. We propose an approach for zero-shot learning of object categories where the description of unseen categories comes in the form of typical text such as an encyclopedia entry, without the need to explicitly defined attributes. We propose and investigate two baseline formulations, based on regression and domain adaptation. Then, we propose a new constrained optimization formulation that combines a regression function and a knowledge transfer function with additional constraints to predict the classifier parameters for new classes. We applied the proposed approach on two fine-grained categorization datasets, and the results indicate successful classifier prediction.
When describing images, humans tend not to talk about the obvious, but rather mention what they find interesting. We argue that abnormalities and deviations from typicalities are among the most important components that form what is worth mentioning. In this paper we introduce the abnormality detection as a recognition problem and show how to model typicalities and, consequently, meaningful deviations from prototypical properties of categories. Our model can recognize abnormalities and report the main reasons of any recognized abnormality. We also show that abnormality predictions can help image categorization. We introduce the abnormality detection dataset and show interesting results on how to reason about abnormalities.
Considering the huge amount of art pieces that exist, there is valuable information to be discovered. Examining a painting, an expert can determine its style, genre, and the time period that the painting belongs. One important task for art historians is to find influences and connections between artists. Is influence a task that a computer can measure? The contribution of this paper is in exploring the problem of computer-automated suggestion of influences between artists, a problem that was not addressed before in a general setting. We first present a comparative study of different classification methodologies for the task of fine-art style classification. A two-level comparative study is performed for this classification problem. The first level reviews the performance of discriminative vs. generative models, while the second level touches the features aspect of the paintings and compares semantic-level features vs. low-level and intermediate-level features present in the painting. Then, we investigate the question "Who influenced this artist?" by looking at his masterpieces and comparing them to others. We pose this interesting question as a knowledge discovery problem. For this purpose, we investigated several painting-similarity and artist-similarity measures. As a result, we provide a visualization of artists (Map of Artists) based on the similarity between their works
Abstract-People typically learn through exposure to visual concepts associated with linguistic descriptions. For instance, teaching visual object categories to children is often accompanied by descriptions in text or speech. In a machine learning context, these observations motivates us to ask whether this learning process could be computationally modeled to learn visual classifiers. More specifically, the main question of this work is how to utilize purely textual description of visual classes with no training images, to learn explicit visual classifiers for them. We propose and investigate two baseline formulations, based on regression and domain transfer, that predict a linear classifier. Then, we propose a new constrained optimization formulation that combines a regression function and a knowledge transfer function with additional constraints to predict the parameters of a linear classifier. We also propose a generic kernelized models where a kernel classifier is predicted in the form defined by the representer theorem. The kernelized models allow defining and utilizing any two RKHS 1 kernel functions in the visual space and text space, respectively. We finally propose a kernel function between unstructured text descriptions that builds on distributional semantics, which shows an advantage in our setting and could be useful for other applications. We applied all the studied models to predict visual classifiers on two fine-grained and challenging categorization datasets (CU Birds and Flower Datasets), and the results indicate successful predictions of our final model over several baselines that we designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.