A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations. * c 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
IMPORTANCE When evaluating surgeons in the operating room, experienced physicians must rely on live or recorded video to assess the surgeon's technical performance, an approach prone to subjectivity and error. Owing to the large number of surgical procedures performed daily, it is infeasible to review every procedure; therefore, there is a tremendous loss of invaluable performance data that would otherwise be useful for improving surgical safety. OBJECTIVE To evaluate a framework for assessing surgical video clips by categorizing them based on the surgical step being performed and the level of the surgeon's competence. DESIGN, SETTING, AND PARTICIPANTS This quality improvement study assessed 103 video clips of 8 surgeons of various levels performing knot tying, suturing, and needle passing from the Johns Hopkins University-Intuitive Surgical Gesture and Skill Assessment Working Set. Data were collected before 2015, and data analysis took place from March to July 2019. MAIN OUTCOMES AND MEASURES Deep learning models were trained to estimate categorical outputs such as performance level (ie, novice, intermediate, and expert) and surgical actions (ie, knot tying, suturing, and needle passing). The efficacy of these models was measured using precision, recall, and model accuracy. RESULTS The provided architectures achieved accuracy in surgical action and performance calculation tasks using only video input. The embedding representation had a mean (root mean square error [RMSE]) precision of 1.00 (0) for suturing, 0.99 (0.01) for knot tying, and 0.91 (0.11) for needle passing, resulting in a mean (RMSE) precision of 0.97 (0.01). Its mean (RMSE) recall was 0.94 (0.08) for suturing, 1.00 (0) for knot tying, and 0.99 (0.01) for needle passing, resulting in a mean (RMSE) recall of 0.98 (0.01). It also estimated scores on the Objected Structured Assessment of Technical Skill Global Rating Scale categories, with a mean (RMSE) precision of 0.85 (0.09) for novice level, 0.67 (0.07) for intermediate level, and 0.79 (0.12) for expert level, resulting in a mean (RMSE) precision of 0.77 (0.04). Its mean (RMSE) recall was 0.85 (0.05) for novice level, 0.69 (0.14) for intermediate level, and 0.80 (0.13) for expert level, resulting in a mean (RMSE) recall of 0.78 (0.03). CONCLUSIONS AND RELEVANCE The proposed models and the accompanying results illustrate that deep machine learning can identify associations in surgical video clips. These are the first steps to creating a feedback mechanism for surgeons that would allow them to learn from their experiences and refine their skills.
The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed detection. To address this problem, in this paper we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of 3 years, a number of measures associated with the subjects' walking speeds and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This work is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.
Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.