Because of the flaws of the present university attendance system, which has always been time intensive, not accurate, and a hard process to follow. It, therefore, becomes imperative to eradicate or minimize the deficiencies identified in the archaic method. The identification of human face systems has evolved into a significant element in autonomous attendance-taking systems due to their ease of adoption and dependable and polite engagement. Face recognition technology has drastically altered the field of Convolution Neural Networks (CNN) however it has challenges of high computing costs for analyzing information and determining the best specifications (design) for each problem. Thus, this study aims to enhance CNN’s performance using Genetic Algorithm (GA) for an automated face-based University attendance system. The improved face recognition accuracy with CNN-GA got 96.49% while the face recognition accuracy with CNN got 92.54%.
Since data warehouses store and update enormous amounts of data from several sources, there is a potential that some of those references may contain inaccurate data. Due to the noise, inefficacy, and poor characterization of the vast amount of accessible data, as well as the ensuing insensitivity and inefficiencies of human data cleaning and labeling, the presentation of the data has become ambiguous, and the assessment of the information has become difficult. A hole in the creation of a better data analysis method was identified. This helped to guide the creation of a Python script for automatically cleaning and labeling data. The first step in the strategy used in this study to accomplish its goals and objectives was to obtain a financial dataset from the top database, "Kaggle". Create a machine learning (ML) approach in Python that intends to automate the financial dataset cleaning. This covers ingesting data, addressing incomplete data, addressing anomalies, one-hot wrapping and label encoding, extracting date and time values, and data normalization. Implementing an unsupervised machine learning method that attempts to automate financial dataset labeling (kmeans). Using the method includes the elbow principle, k-means clustering, data modeling of "age" versus "arrival," dimensionality reductions, computer vision, and dataset categorizing using the groupings. An empirical assessment of the cleaned and labeled automated trading dataset utilizing a comparison of the cleaned dataset before and after PCA adoption. The results show that the developed ML technique not only improved the performance of the audit data used in this study, but also classified the data after cleaning it and removing the unpleasant section and incomplete data, as shown by the k-means segmentation result and grouping by PCA.Povzetek: Razvili so skripto v Pythonu za avtomatsko čiščenje in označevanje finančnih podatkov ter podatke uporabili za strojno učenje za avtomatizacijo postopka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.