This review explores supramolecular gels as materials for environmental remediation. These soft materials are formed by self-assembling low-molecular-weight building blocks, which can be programmed with molecular-scale information by simple organic synthesis. The resulting gels often have nanoscale 'solid-like' networks which are sample-spanning within a 'liquid-like' solvent phase. There is intimate contact between the solvent and the gel nanostructure, which has a very high effective surface area as a result of its dimensions. As such, these materials have the ability to bring a solid-like phase into contact with liquids in an environmental setting. Such materials can therefore remediate unwanted pollutants from the environment including: immobilisation of oil spills, removal of dyes, extraction of heavy metals or toxic anions, and the detection or removal of chemical weapons. Controlling the interactions between the gel nanofibres and pollutants can lead to selective uptake and extraction. Furthermore, if suitably designed, such materials can be recyclable and environmentally benign, while the responsive and tunable nature of the self-assembled network offers significant advantages over other materials solutions to problems caused by pollution in an environmental setting.
Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.
We report a novel gelator functionalised with hydrazides (as replacements for carboxylic acids) which, as a result, is able to assemble into hydrogels across a wide pH range - this gelator exhibits pH-switchable dye adsorption-desorption dependent on protonation of the target dyes and their resulting interactions with the self-assembled gel nanofibres.
Dibenzylidene-D-sorbitol (DBS) has been a well-known low-molecular-weight gelator of organic solvents for over 100 years. As such, it constitutes a very early example of a supramolecular gel--a research field which has recently developed into one of intense interest. The ability of DBS to self-assemble into sample-spanning networks in numerous solvents is predicated upon its 'butterfly-like' structure, whereby the benzylidene groups constitute the 'wings' and the sorbitol backbone the 'body'--the two parts representing the molecular recognition motifs underpinning its gelation mechanism, with the nature of solvent playing a key role in controlling the precise assembly mode. This gelator has found widespread applications in areas as diverse as personal care products and polymer nucleation/clarification, and has considerable potential in applications such as dental composites, energy technology and liquid crystalline materials. Some derivatives of DBS have also been reported which offer the potential to expand the scope and range of applications of this family of gelators and endow the nansocale network with additional functionality. This review aims to explain current trends in DBS research, and provide insight into how by combining a long history of application, with modern methods of derivatisation and analysis, the future for this family of gelators is bright, with an increasing number of high-tech applications, from environmental remediation to tissue engineering, being within reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.