Cognitive radio networks (CRN), in their quest to become the preferred next-generation wireless communication paradigm, will depend heavily on their ability to efficiently manage the limited resources at their disposal in meeting the demands of their numerous users and driving their operations. As a result, a considerable amount of research work has been recently dedicated to investigating and developing resource allocation (RA) models that capture the essentials of CRN. The various ideas put forward by researchers to address RA problems in CRN have been somewhat diverse, and somehow, there seem to be no links that bring cohesion and clarity of purpose and ideas. To address this problem and bridge the gap, in this paper, a comprehensive study on the prevalent techniques developed for addressing RA problems in CRN is carried out, with an intent to put some structure, relevance and meaning to the various solution approaches. The solution models are therefore grouped and/or classified based on certain outstanding criteria, and their strengths and weaknesses highlighted. Open-ended problems are identified, and suggestions for improving solution models are given. The study therefore gives good directions for further investigations on developing RA solutions in CRN.
Cognitive radio (CR) network is currently an emerging technology for future wireless communications. In this paper, the problem of resource allocation for heterogeneous users in an underlay CR network is addressed. The objective is to maximize the weighted sum of the data rate for all the categories of secondary users within the network. The problem is first formulated as a non-linear optimization problem which is nondeterministic polynomial-time (NP) hard. The problem is then cleverly re-formulated as an integer linear programming problem and solved through branch-and-bound method. The impact of the weights on the different categories of users is also investigated. The results obtained show that through the approach developed by the authors, optimal resource allocation is achievable for heterogeneous CR networks.
Network failures are undesirable but inevitable occurrences for most modern communication and computing networks. A good network design must be robust enough to handle sudden failures, maintain traffic flow, and restore failed parts of the network within a permissible time frame, at the lowest cost achievable and with as little extra complexity in the network as possible. Emerging next-generation (xG) communication and computing networks such as fifth-generation networks, software-defined networks, and internet-of-things networks have promises of fast speeds, impressive data rates, and remarkable reliability. To achieve these promises, these complex and dynamic xG networks must be built with low failure possibilities, high network restoration capacity, and quick failure recovery capabilities. Hence, improved network restoration models have to be developed and incorporated in their design. In this paper, a comprehensive study on network restoration mechanisms that are being developed for addressing network failures in current and emerging xG networks is carried out. Open-ended problems are identified, while invaluable ideas for better adaptation of network restoration to evolving xG communication and computing paradigms are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.