Aims: To study the antibiogram of 40 seafood isolates of Salmonella and use of PCR to detect the presence of integrons and genes coding for antibiotic resistance. Methods and Results: In this study, 40 isolates of Salmonella were used for antibiogram analysis. The multidrug‐resistant isolates were analyzed for the presence of integron using integron‐specific primers. Twenty‐five percentage of the isolates were multidrug resistant while 67·50% were resistant to at least two antibiotics. Antibiotic resistance genes catA1 and tetA were present in 57·52 and 60%, respectively. Although widespread presence of genes was observed, only 26·08% of the catA1‐carrying isolates exhibited phenotypic resistance against the respective antibiotic. Integrons present in representative isolates of Salmonella Weltevreden and Salmonella Newport were sequenced. The former contained class 1 integron with a single gene dfrA7 in the integron cassette and an adjacent dihydropteroate synthetase gene along with the usual quaternary ammonium compound resistance gene, while the later contained class 1 integron with dhfrA1, OrfC, in the integron cassette and an adjacent dihydropteroate synthetase gene along with the usual quaternary ammonium compound resistance gene. Conclusions: This study demonstrates the presence of silent antibiotic resistance genes and class I integrons in seafood‐associated Salmonella strains. The study also demonstrates the first report of class I integron in Salm. Weltevreden. Detection of catA1 genes in phenotypically sensitive bacteria suggests that these could be reservoirs in the environment. Significance and Impact of the Study: The manuscript provides novel results describing the existence of a high rate of antibiotic resistance in the Salmonella populations prevailing in environmental sources as well as an absence of correspondence between the presence of antibiotic resistance genes, and the exhibition of a the corresponding phenotypic trait of resistance against the respective antibiotic compound was observed. In addition, the manuscript reports the presence of the class I integron in Salm. Weltevreden.
The present study was conducted to determine the prevalence of Rhodococcus equi infection in equines of Jammu and Kashmir, India, and evaluate the zoonotic threat posed by this organism to equine owners and tourists. One hundred and forty-one samples (98 samples from adult animals ≥5 years old and 43 samples from foals less than 6 months old) were collected in duplicate from nasopharyngeal tract of equines for isolation and direct PCR. A total of 12 isolates of R. equi were recovered, of which 9 were from foals and 3 from adult animals. Therefore, the present study recorded prevalence rates of 20.93% and 3.06% among foals and adult equines respectively. The prevalence rates were found to be 25.58% and 4.08% by 16S rRNA species-specific PCR among foals and adult animals respectively. Thus, the PCR-based assay was found to be more sensitive and helped in quick detection of R. equi than the culture based method which is time consuming and laborious. However, the culture-based method is still preferred due to some limitations of PCR. The antibiogram of the isolates revealed that erythromycin and rifampicin were the most effective antimicrobials with 100% sensitivity, followed by amoxicillin (66.67%), lincomycin (58.3%) and kanamycin (58.3%). The results also revealed that resistance was highest for penicillin G (50%), followed by kanamycin (25%) and streptomycin (25%).
Present study was undertaken to study the prevalence of β-haemolytic streptococci in equine of northern temperate region of Jammu and Kashmir, India. One hundred and forty one samples were collected in duplicate from nasopharyngeal tract of diseased (53) and apparently healthy equine (88) for isolation and direct PCR. A total of 77 isolates of streptococci were recovered from 141 samples with an overall prevalence rate of 54.60%. Out of these 77 isolates, 52 were from diseased and 25 from apparently healthy animals. Of the 77 isolates, 4 were identified as Streptococcus equi subsp. equi, 56 as S. equi subsp. zooepidemicus and 17 as S. dysgalactiae subsp. equisimilis. Thus the overall prevalence of S. equi subsp. equi, S. equi subsp. zooepidemicus and S. dysgalactiae subsp. equisimilis was 2.83, 39.71 and 12.05% respectively. The sensitivity of the PCR for the detection of S. equi species was found higher when attempted from direct swab samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.