The loss of renal function occurs gradually in diabetic kidney disease (DKD), which is associated with a high death rate. India is second only to China in the number of people living with DKD and it is expected that one million new cases arise in India each year. If diagnosed at an early stage, DKD may be effectively treated. DKD is more dangerous since it often has no early warning signs in its infancy. From a healthcare provider's standpoint, it is crucial to take preventative measures by using a machine-first model to foresee the beginning of DKD. The likelihood that a patient may acquire DKD can be estimated using their health records, and there are open source machine learning methods available to do this. The amount of clinical factors and the number of datasets used to train the algorithm both affect the prediction accuracy. A machine learning method and a booster algorithm were used in this work to increase the accuracy of DKD prediction. The strategy utilized in boosting algorithm produced more reliable outcomes than models used without boosting such as random tree, KNN and support vector machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.