A methodology is presented for investigating the dynamics of heterogeneous media using the nonlocal continuum model given by the peridynamic formulation. The approach presented here provides the ability to model the macroscopic dynamics while at the same time resolving the dynamics at the length scales of the microstructure. Central to the methodology is a novel two-scale evolution equation. The rescaled solution of this equation is shown to provide a strong approximation to the actual deformation inside the peridynamic material. The two scale evolution can be split into a microscopic component tracking the dynamics at the length scale of the heterogeneities and a macroscopic component tracking the volume averaged (homogenized) dynamics. The interplay between the microscopic and macroscopic dynamics is given by a coupled system of evolution equations. The equations show that the forces generated by the homogenized deformation inside the medium are related to the homogenized deformation through a history dependent constitutive relation.
Abstract. During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area-perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m 2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m 2 , whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.
The convergence of a peridynamic model for solid mechanics inside heterogeneous media in the limit of vanishing nonlocality is analyzed. It is shown that the operator of linear peridynamics for an isotropic heterogeneous medium converges to the corresponding operator of linear elasticity when the material properties are sufficiently regular. On the other hand, when the material properties are discontinuous, i.e., when material interfaces are present, it is shown that the operator of linear peridynamics diverges, in the limit of vanishing nonlocality, at material interfaces. Nonlocal interface conditions, whose local limit implies the classical interface conditions of elasticity, are then developed and discussed. A peridynamics material interface model is introduced which generalizes the classical interface model of elasticity. The model consists of a new peridynamics operator along with nonlocal interface conditions. The new peridynamics interface model converges to the classical interface model of linear elasticity.
A methodology is presented for investigating the dynamics of heterogeneous media using the nonlocal continuum model given by the peridynamic formulation. The approach presented here provides the ability to model the macroscopic dynamics while at the same time resolving the dynamics at the length scales of the microstructure. Central to the methodology is a novel two-scale evolution equation. The rescaled solution of this equation is shown to provide a strong approximation to the actual deformation inside the peridynamic material. The two scale evolution can be split into a microscopic component tracking the dynamics at the length scale of the heterogeneities and a macroscopic component tracking the volume averaged (homogenized) dynamics. The interplay between the microscopic and macroscopic dynamics is given by a coupled system of evolution equations. The equations show that the forces generated by the homogenized deformation inside the medium are related to the homogenized deformation through a history dependent constitutive relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.