BackgroundIntracellular signaling through cyclic nucleotides, both cyclic AMP and cyclic GMP, is altered in colorectal cancer. Accordingly, it is hypothesized that an underlying mechanism for colorectal neoplasia involves altered function of phosphodiesterases (PDEs), which affects cyclic nucleotide degradation. Here we present an approach to evaluate the function of selected cyclic nucleotide-PDEs in colonic endoscopic biopsies from non-neoplastic appearing mucosa.MethodsBiopsies were obtained from patients with and without colorectal neoplasia. Activities of PDEs were characterized functionally by measurements of transepithelial ion transport and their expression and localization by employing real-time qPCR and immunohistochemistry.ResultsIn functional studies PDE subtype-4 displayed lower activity in colorectal neoplasia patients (p = 0.006). Furthermore, real-time qPCR analysis showed overexpression of subtype PDE4B (p = 0.002) and subtype PDE5A (p = 0.02) in colorectal neoplasia patients. Finally, immunohistochemistry for 7 PDE isozymes demonstrated the presence of all 7 isozymes, albeit with weak reactions, and with no differences in localization between colorectal neoplasia and control patients. Of note, quantification of PDE subtype immunostaining revealed a lower amount of PDE3A (p = 0.04) and a higher amount of PDE4B (p = 0.02) in samples from colorectal neoplasia patients.ConclusionIn conclusion, functional data indicated lower activity of PDE4 subtypes while expressional and abundance data indicated a higher expression of PDE4B in patients with colorectal neoplasia. We suggest that cyclic nucleotide-PDE4B is overexpressed as a malfunctioning protein in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. If a predisposition of reduced PDE4B activity in colonic mucosa from colorectal neoplasia patients is substantiated further, this subtype could be a potential novel early diagnostic risk marker and may even be a target for future medical preventive treatment of colorectal cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2980-z) contains supplementary material, which is available to authorized users.
BackgroundCyclooxygenase (COX) activity is increased in endoscopic normal colonic mucosa from patients with colorectal neoplasia (CRN). COX-2 is thought to be the predominant COX isozyme involved in neoplasia. Meanwhile, relative contributions of COX-1 and COX-2 isoforms are unknown. Knowledge about their mutual activity in colonic mucosa is important for diagnostics and targeted therapy for CRN. The aim of this study was to assess the relative function, expression and localization of COX-1 and COX-2 enzymes in colonic non-neoplastic human mucosa and thereby to potentially reveal a mucosal disease predisposition for better treatment.MethodsBiopsies were pinched from normal appearing colonic mucosa in patients undergoing endoscopy. Ussing chamber technique was applied for an indirect assessment of epithelial activity, RT-qPCR for expression and immunohistochemistry for localization of COX-1 and COX-2 enzymes in patients without (ctrls) and with a history of CRN (CRN-pts).ResultsCombined COX-1 and COX-2 activity was higher in CRN-pts, p = 0.036. COX-2 was primarily localized in absorptive cells, while COX-1 appeared to be restricted to nonenteroendocrine tuft cells of the colonic epithelium.ConclusionsIn biopsies from endoscopic normal appearing colonic mucosa, combined activity of COX-1 and COX-2 enzymes is increased in CRN-pts compared with ctrls. This indicates that COX-1 and COX-2 together contribute to an increased proliferation process. Of note, in colonic epithelial cell lining, the COX-1 enzyme seems localized in tuft cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.