Network traffic classification is significant for task such as Quality of Services (QoS) provisioning, resource usage planning, pricing as well as in the context of security such as in Intrusion detection systems. The field has received considerable attention in the industry as well as research communities where approaches such as Port based, Deep packet Inspection (DPI), and Classical machine learning techniques were thoroughly studied. However, the emergence of new applications and encryption protocols as a result of continuous transformation of Internet has led to the rise of new challenges. Recently, researchers have employed deep learning techniques in the domain of network traffic classification in order to leverage the inherent advantages offered by deep learning models such as the ability to capture complex pattern as well as automatic feature learning. This paper reviews deep learning based encrypted traffic classification techniques, as well as highlights the current research gap in the literature. Index Terms : Traffic classification, Encrypted traffic, Deep learning, Machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.