A new tripodal ligand has been designed by connecting pyridine-based coordination units to a rigid triptycene moiety. Its reaction with europium(III) provides three-dimensional tetranuclear edifices, whose structural and photophysical characteristics as well as host-guest interactions are discussed in this contribution.
The self-assembly of the first pentanuclear helicate was predicted on the structural basis obtained for linear and tetranuclear parent supramolecular compounds. Accordingly, the designed ternary supramolecular system requires appropriate polytopic organic receptors, which were successfully synthesized. Indeed, the formation of pentanuclear complexes was experimentally evidenced with NMR and ESMS spectra that perfectly reflect the expected pattern. The structural features in the europium pentanuclear complex are highlighted with semiempirical molecular modeling. The present work validates the combinatorial approach leading to the thermodynamically driven formation of tower-like pentanuclear edifices.
The structure and thermodynamic properties of lanthanide complexes with a new tripodal ligand L2 have been elucidated using different physicochemical methods. At stoichiometric ratios, the tetrahedral three-dimensional complexes with lanthanide cations are formed in acetonitrile with good stabilities. Despite minor structural changes comparing to previously investigated tripodal ligands, the resulting assembly exhibits different features revealed with the crystal structure of [Eu(4)L2(4)](OH)(ClO(4))(11) (orthorhombic, Pbcn). Interestingly, the highly charged edifice contains an inner cage encapsulating a perchlorate anion. Such lanthanide mediated cage-like assemblies are rare, and may be of interest for different sensing applications. Indeed, the anionic guest can be exchanged with different anions. The related host-guest equilibria were investigated with NMR techniques. Various aspects of these reactions are qualitatively discussed.
Two tridentate and one bidentate binding strands have been anchored on a carbon atom to provide a new unsymmetrical tripodal ligand L for Ln(III) coordination. The ligand itself adopts a single conformation in solution stabilized by intramolecular hydrogen bonds evidenced in the solid state. The reaction of L with trivalent lanthanides provides different coordination complexes depending on the metal/ligand ratio. The speciation studies with selected lanthanides were performed in solution by means of NMR, ESMS, and spectrophotometric titrations. Differences in coordination properties along the lanthanide series were evidenced and may be associated with the changes in the ionic size. However, thermodynamic stability constants for the species of the same stoichiometry do not significantly vary. In addition, the structure of the dinuclear complex [Eu(2)L(2)](6+) has been elucidated in the solid state, where the complex crystallizes predominantly as an M-isomer. The crystal structure shows the coordination of two different ligands to each europium cation through tridentate strands, and the europium nine-coordinate sphere is completed with three solvent molecules. Finally, the results of photophysical investigations of [Eu(2)L(2)](6+) are in close agreement with the structural parameters determined by crystallography.
Thorough speciation studies of Ln(iii) complexes with new dissymmetrical tripodal ligands were undertaken, which reveal the preferential formation of unsaturated dinuclear helicates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.