The exploration and production of polar oil and gas fields, which are technologically challenging due to extreme weather conditions, are also constrained by strong environmental issues. Safe and economical activities in such hostile and fragile regions require very insightful engineering. The presence of sea ice is representing a triple challenge: economical, technological and environmental. This makes the Arctic exploration and production activities complex. Ice Management (IM) is one of the tools that could efficiently assist to develop Arctic reserves. However, for each project that uses IM operations, a preliminary study is required to evaluate the efficiency of these support operations and to estimate the possible extension in the season of operation of a field. Efficiency of an IM philosophy can be estimated in a global view based on the extension in the operability window. In a more detailed view, it can be assessed taking into account the optimal number of icebreakers, the IM patterns, the available time for eventual disconnection, and the floe size reduction (leading to ice load reduction). For this study, we will focus on the ice floe size and loads reduction. The most common approach for physical management of sea ice is the one where icebreakers reduce floe size of the drifting ice upstream the floating platform (ref. Moran et al. [1], Coche et al. [2]). This paper describes this philosophy and demonstrates based on real-time simulation that its benefit is limited to mild ice scenarios such as unidirectional ice drift. A more efficient way to manage sea ice is (1) to identify the most hazardous events (e.g. big ridges); (2) prioritize these events; and (3) deal with them starting by the most hazardous one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.