This paper introduces a new method based on Deep Galerkin Methods (DGMs) for solving high-dimensional stochastic Mean Field Games (MFGs). We achieve this by using two neural networks to approximate the unknown solutions of the MFG system and forward-backward conditions. Our method is efficient, even with a small number of iterations, and is capable of handling up to 300 dimensions with a single layer, which makes it faster than other approaches. In contrast, methods based on Generative Adversarial Networks (GANs) cannot solve MFGs with non-separable Hamiltonians. We demonstrate the effectiveness of our approach by applying it to a traffic flow problem, which was previously solved using the Newton iteration method only in the deterministic case. We compare the results of our method to analytical solutions and previous approaches, showing its efficiency. We also prove the convergence of our neural network approximation with a single hidden layer using the universal approximation theorem.
This paper is devoted to the application of an l 1 -minimisation technique to construct an arbitrage-free call-option surface. We propose a nononparametric approach to obtaining model-free call option surfaces that are perfectly consistent with market quotes and free of static arbitrage. The approach is inspired from the compressed-sensing framework that is used in signal processing to deal with under-sampled signals. We address the problem of fitting the call-option surface to sparse option data. To illustrate the methodology, we proceed to the construction of the whole call-price surface of the S&P500 options, taking into account the arbitrage possibilities in the time direction. The resulting object is a surface free of both butterfly and calendar-spread arbitrage that matches the original market points. We then move on to an FX application, namely the HKD/USD call-option surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.