Let R be a commutative ring with identity and S ⊊ R a multiplicative subset. We define a proper ideal P of R disjoint from S to be weakly S-primary if there exists an s ∈ S such that for all a, b ∈ R if 0≠ ab ∈ P then sa ∈ P or sb ∈ √P. We show that weakly S-primary ideals enjoy analogs of many properties of weakly primary ideals and we study the form of weakly S-primary ideals of the amalgamation of A with B along an ideal J with respect to f (denoted by A ⋈fJ). Weakly S-primary ideals of the trivial ring extension are also characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.