Batik tulis adalah hasil seni budaya yang memiliki keindahan visual dan mengandung makna filosofis pada setiap motifnya. Batik tulis memiliki morif yang sangat beragam dan memiliki tingkat kompleksitas yang tingi sehingga menjadi kesulitan tersendiri dalam pengelompokan kelas batik tertentu. Klasifikasi citra ke dalam kelas tertentu juga menjadi permasalahan yang pelik dalam bidang pengenalan pola. Metode machine learning dapat digunakan untuk mengenali kelas batik melalui pengenalan citra batik. Namun belum banyak penelitian terkait studi komparasi klasifikasi citra batik. Sehingga penelitian ini berfokus pada data set citra batik tulis yang menggunakan dua motif yaitu motif klasik dan motif kontemporer. Pada penelitian ini, fitur ekstraksi menjadi dasar klasifikasi dengan metode Backpropagation Neural Network dan k-Nearest Neighbor. Tujuan dari penelitian ini untuk menemukan pola baru dalam data dengan menghubungkan pola data yang sudah ada dengan data yang baru. Selanjutnya, penelitian ini melakukan perbandingan metode klasifikasi antara Backpropagation Neural Network dan k-Nearest Neighbor untuk mencari metode klasifikasi terbaik untuk klasifikasi Batik tulis Bakaran. Hasil dari studi komparasi menunjukkan bahwa metode Backpropagation Neural Network memperoleh nilai akurasi 90,11% sedangkan metode k-Nearest Neighbor mendapatkan nilai akurasi 96,00%. Sehingga dapat di simpulkan bahwa metode k-Nearest Neighbor merupakan metode terbaik untuk klasifikasi citra batik.
Batik tulis adalah hasil seni budaya yang memiliki keindahan visual dan mengandung makna filosofis pada setiap motifnya. Motif batik tulis berkembang sejalan dengan perkembangan jaman dan kehidupan masyarakat. Motif batik tulis memiliki bentuk yang sangat beragam dan memiliki tingkat kompleksitas yang tingi sehingga menjadi kesulitan tersendiri dalam pengelompokan kelas batik tertentu. Klasifikasi citra ke dalam kelas tertentu juga menjadi permasalahan yang pelik dalam bidang pengenalan pola. Metode machine learning dapat digunakan untuk mengenali kelas batik melalui pengenalan citra batik. Namun belum banyak penelitian terkait studi komparasi klasifikasi citra batik. Sehingga penelitian ini berfokus pada data set citra batik tulis yang menggunakan dua motif yaitu motif klasik dan motif kontemporer. Pada penelitian ini, fitur ekstraksi menjadi dasar klasifikasi dengan metode Backpropagation Neural Network dan k-Nearest Neighbor. Tujuan dari penelitian ini untuk menemukan pola baru dalam data dengan menghubungkan pola data yang sudah ada dengan data yang baru. Selanjutnya, penelitian ini melakukan perbandingan metode klasifikasi antara Backpropagation Neural Network dan k-Nearest Neighbor untuk mencari metode klasifikasi terbaik untuk klasifikasi Batik tulis Bakaran. Hasil dari studi komparasi menunjukkan bahwa metode Backpropagation Neural Network memperoleh nilai akurasi 90,11% sedangkan metode k-Nearest Neighbor mendapatkan nilai akurasi 96,00%. Sehingga dapat di simpulkan bahwa metode k-Nearest Neighbor merupakan metode terbaik untuk klasifikasi citra batik bakaran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.