BackgroundAn outbreak of pneumococcal meningitis among non-infant children and adults occurred in the Brong-Ahafo region of Ghana between December 2015 and April 2016 despite the recent nationwide implementation of a vaccination programme for infants with the 13-valent pneumococcal conjugate vaccine (PCV13).MethodsCerebrospinal fluid (CSF) specimens were collected from patients with suspected meningitis in the Brong-Ahafo region. CSF specimens were subjected to Gram staining, culture and rapid antigen testing. Quantitative PCR was performed to identify pneumococcus, meningococcus and Haemophilus influenzae. Latex agglutination and molecular serotyping were performed on samples. Antibiogram and whole genome sequencing were performed on pneumococcal isolates.ResultsEight hundred eighty six patients were reported with suspected meningitis in the Brong-Ahafo region during the period of the outbreak. In the epicenter district, the prevalence was as high as 363 suspected cases per 100,000 people. Over 95 % of suspected cases occurred in non-infant children and adults, with a median age of 20 years. Bacterial meningitis was confirmed in just under a quarter of CSF specimens tested. Pneumococcus, meningococcus and Group B Streptococcus accounted for 77 %, 22 % and 1 % of confirmed cases respectively. The vast majority of serotyped pneumococci (80 %) belonged to serotype 1. Most of the pneumococcal isolates tested were susceptible to a broad range of antibiotics, with the exception of two pneumococcal serotype 1 strains that were resistant to both penicillin and trimethoprim-sulfamethoxazole. All sequenced pneumococcal serotype 1 strains belong to Sequence Type (ST) 303 in the hypervirulent ST217 clonal complex.ConclusionThe occurrence of a pneumococcal serotype 1 meningitis outbreak three years after the introduction of PCV13 is alarming and calls for strengthening of meningitis surveillance and a re-evaluation of the current vaccination programme in high risk countries.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-1914-3) contains supplementary material, which is available to authorized users.
BackgroundGhana recorded the last case of indigenous wild poliovirus in 1999 but suffered two more outbreaks in 2003 and 2008. Following the World Health Organization (WHO) guidelines, transmission was interrupted through high routine immunisation coverage with live-attenuated oral polio vaccine (OPV), effective acute flaccid paralysis (AFP) surveillance and supplementary immunisation activities (SIA). This article describes the results of a five-year surveillance of AFP in polio-free Ghana, evaluate the surveillance indicators and identify areas that need improvement.MethodsWe investigated 1345 cases of AFP from children aged less than 15 years reported to the Disease Surveillance Department from January 2009 to December 2013. Data on demographic characteristics, vaccination history, clinical presentation and virological investigation on stool specimens collected during investigation were analysed.ResultsOf the specimens analysed, 56% were from males and 76.3% were from children less than 5 years of age. Twenty-four percent of the children received up to 3 doses of OPV, 57% received at least 4 doses while the status of 19% was unknown. Core AFP surveillance indicators were partly met for non-polio AFP rate while the WHO target for stool adequacy and timeliness was exceeded over the period of study. All the cases were classified virologically, however no wild polio was found. Sixty-day follow-up was conducted for 56.3% of cases and 8.6% cases classified as compactible with polio.ConclusionBoth laboratory and epidemiological surveillance for AFP were efficient and many WHO targets were met. However, due to the risk of poliovirus importation prior to global eradication, longterm surveillance is required to provide a high degree of confidence in prevention of poliovirus infection in Ghana. Thus, efforts should be made to strengthen regional performance and to follow–up on all AFP cases in order to establish proper diagnoses for the causes of the AFP leading to proper care.
Background In 2010–2017, meningococcal serogroup A conjugate vaccine (MACV) was introduced in 21 African meningitis belt countries. Neisseria meningitidis A epidemics have been eliminated here; however, non-A serogroup epidemics continue. Methods We reviewed epidemiological and laboratory World Health Organization data after MACV introduction in 20 countries. Information from the International Coordinating Group documented reactive vaccination. Results In 2011–2017, 17 outbreaks were reported (31 786 suspected cases from 8 countries, 1–6 outbreaks/year). Outbreaks were of 18–14 542 cases in 113 districts (median 3 districts/outbreak). The most affected countries were Nigeria (17 375 cases) and Niger (9343 cases). Cumulative average attack rates per outbreak were 37–203 cases/100 000 population (median 112). Serogroup C accounted for 11 outbreaks and W for 6. The median proportion of laboratory confirmed cases was 20%. Reactive vaccination was conducted during 14 outbreaks (5.7 million people vaccinated, median response time 36 days). Conclusion Outbreaks due to non-A serogroup meningococci continue to be a significant burden in this region. Until an affordable multivalent conjugate vaccine becomes available, the need for timely reactive vaccination and an emergency vaccine stockpile remains high. Countries must continue to strengthen detection, confirmation, and timeliness of outbreak control measures.
The Coronavirus disease 2019 (COVID-19) outbreak in Ghana is part of an ongoing pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The first two cases of COVID-19 were confirmed in Ghana on 12th March 2020. COVID-19 was consequently declared a Public Health Emergency of National Concern, triggering several response actions, including enhanced surveillance, case detection, case management and contact tracing, closure of borders, suspension of international flights, ban on social gatherings and closure of schools. Preparedness and response plans were activated for implementation at the national, regional, district and community levels. Ghana’s Strategic approaches were to limit and stop the importation of cases; detect and contain cases early; expand infrastructure, logistics and capacity to provide quality healthcare for the sick; minimise disruption to social and economic life and increase the domestic capacity of all sectors to deal with existing and future shocks. The health sector strategic frame focused on testing, treatment, and tracking. As of 31st December 2020, a total of 535,168 cases, including 335 deaths (CFR: 0.61%), have been confirmed with 53,928 recoveries and 905 active cases. All the regions have reported cases, with Greater Accra reporting the highest number. The response actions in Ghana have seen highlevel political commitment, appropriate and timely decisions, and a careful balance of public health interventions with economic and socio-cultural dynamics. Efforts are ongoing to intensify non-pharmaceutical interventions, sustain the gains made so far and introduce COVID-19 vaccines to reduce the public health burden of the disease in Ghana
Summaryobjective To investigate the impact of seasonal intermittent preventive treatment (IPTc) on malariarelated morbidity in children <5 years of age who already had access to home-based management of malaria (HMM) for presumptive treatment of fevers.method Thirty community-based drug distributors (CDDs) from all 13 communities of a rural subdistrict in Ghana were trained to provide prompt treatment for presumptive malaria using artesunateamodiaquine (AS+AQ) to all children under 5 years of age. Six communities were randomised to also receive bimonthly courses of seasonal IPTc with AS+AQ in May, July and September of 2007. The primary outcome was the incidence rate of febrile episodes diagnosed presumptively as malaria by the CDDs in the communities in each intervention group. Cross-sectional surveys were conducted to determine the prevalence of parasitaemia and anaemia among the study children.results During the 6 months in which IPTc was delivered, incidence of fevers in communities given HMM+IPTc was lower than in communities given HMM alone, but this difference was not statistically significant (protective efficacy: 37.0%(95% CI: )9.7 to 63.8; P = 0.14). However, incidence of presumptive malaria was significantly lower in IPTc communities when only children who received all three courses of IPTc were included in the analysis: protective efficacy 61.5% (95% CI:31.2-78.5; P = 0.018). Protection with IPTc was not followed by rebound morbidity in the following year. At the end of the intervention period, prevalence of asymptomatic parasitaemia was lower in communities that had received IPTc, but there were no differences in anaemia or haemoglobin concentration.conclusion In this study area, incidence of fevers was lower in communities given three courses of IPTc during the time of peak transmission than in communities that received only HMM. However, high levels of coverage for IPTc will be necessary for maximum impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.