Repetitive transcranial magnetic stimulation (rTMS) can be used in various neurological disorders. However, neurobiological mechanism of rTMS is not well known. Therefore, in this study, we examined the global gene expression patterns depending on different frequencies of repetitive magnetic stimulation (rMS) in both undifferentiated and differentiated Neuro-2a cells to generate a comprehensive view of the biological mechanisms. The Neuro-2a cells were randomly divided into three groups—the sham (no active stimulation) group, the low-frequency (0.5 Hz stimulation) group, and high-frequency (10 Hz stimulation) group—and were stimulated 10 min for 3 days. The low- and high-frequency groups of rMS on Neuro-2a cells were characterized by transcriptome array. Differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded a Kyoto Encyclopedia of Genes and Genomes pathway. Amphetamine addiction pathway, circadian entrainment pathway, long-term potentiation (LTP) pathway, neurotrophin signaling pathway, prolactin signaling pathway, and cholinergic synapse pathway were significantly enriched in high-frequency group compared with low-frequency group. Among these pathways, LTP pathway is relevant to rMS, thus the genes that were involved in LTP pathway were validated by quantitative real-time polymerase chain reaction and western blotting. The expression of glutamate ionotropic receptor N-methyl d-aspartate 1, calmodulin-dependent protein kinase II (CaMKII) δ, and CaMKIIα was increased, and the expression of CaMKIIγ was decreased in high-frequency group. These genes can activate the calcium (Ca2+)–CaMKII–cAMP-response element-binding protein (CREB) pathway. Furthermore, high-frequency rMS induced phosphorylation of CREB, brain-derived neurotrophic factor (BDNF) transcription via activation of Ca2+–CaMKII–CREB pathway. In conclusion, high-frequency rMS enhances the expression of BDNF by activating Ca2+–CaMKII–CREB pathway in the Neuro-2a cells. These findings may help clarify further therapeutic mechanisms of rTMS.
Olfactory bulb (OB) plays an important role in protecting against harmful substances via the secretion of antioxidant and detoxifying enzymes. Environmental enrichment (EE) is a common rehabilitation method and known to have beneficial effects in the central nervous system. However, the effects of EE in the OB still remain unclear. At 6 weeks of age, CD-1® (ICR) mice were assigned to standard cages or EE cages. After 2 months, we performed proteomic analysis. Forty-four up-regulated proteins were identified in EE mice compared to the control mice. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes Pathway demonstrated that the upregulated proteins were mainly involved in metabolic pathways against xenobiotics. Among those upregulated proteins, 9 proteins, which participate in phase I or II of the xenobiotic metabolizing process and are known to be responsible for ROS detoxification, were validated by qRT-PCR. To explore the effect of ROS detoxification mediated by EE, glutathione activity was measured by an ELISA assay. The ratio of reduced glutathione to oxidized glutathione was significantly increased in EE mice. Based on a linear regression analysis, GSTM2 and UGT2A1 were found to be the most influential genes in ROS detoxification. For further analysis of neuroprotection, the level of iNOS and the ratio of Bax to Bcl-2 were significantly decreased in EE mice. While TUNEL+ cells were significantly decreased, Ki67+ cells were significantly increased in EE mice, implicating that EE creates an optimal state for xenobiotic metabolism and antioxidant activity. Taken together, our results suggested that EE protects olfactory layers via the upregulation of glutathione-related antioxidant and xenobiotic metabolizing enzymes, eventually lowering ROS-mediated inflammation and apoptosis and increasing neurogenesis. This study may provide an opportunity for a better understanding of the beneficial effects of EE in the OB.
White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.
Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5′ UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.