Objective: This study was conducted to investigate the mechanisms of action of Eurycoma longifolia in rat corpus cavernosum. Materials and Methods: Tincture of the roots was concentrated to dryness by evaporating the ethanol in vacuo. This ethanolic extract was partitioned into 5 fractions sequentially with hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The corpus cavernosum relaxant activity of each fraction was investigated. The DCM fraction which showed the highest potency in relaxing phenylephrine-precontracted corpora cavernosa was purified by column chromatography. The effects of the most potent DCM subfraction in relaxing phenylephrine-precontracted corpora cavernosa, DCM-I, on angiotensin I- or angiotensin II-induced contractions in corpora cavernosa were investigated. The effects of DCM-I pretreatment on the responses of phenylephrine-precontracted corpora cavernosa to angiotensin II or bradykinin were also studied. An in vitro assay was conducted to evaluate the effect of DCM-I on angiotensin-converting enzyme activity. Results: Fraction DCM-I decreased the maximal contractions (100%) evoked by angiotensin I and angiotensin II to 30 ± 14% and 26 ± 16% (p < 0.001), respectively. In phenylephrine-precontracted corpora cavernosa, DCM-I pretreatment caused angiotensin II to induce 82 ± 27% relaxation of maximal contraction (p < 0.01) and enhanced (p < 0.001) bradykinin-induced relaxations from 47 ± 8% to 100 ± 5%. In vitro, DCM-I was able to reduce (p < 0.001) the maximal angiotensin-converting enzyme activity to 78 ± 0.24%. Conclusion: Fraction DCM-I was able to antagonize angiotensin II-induced contraction to cause corpus cavernosum relaxation via inhibition of angiotensin II type 1 receptor and enhance bradykinin-induced relaxation through inhibition of angiotensin-converting enzyme.
Although Eurycoma longifolia has been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluated in vitro. Results showed that DCM-II reduced (p < 0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p < 0.05) while bradykinin- (BK-) induced relaxation enhanced (p < 0.001). In vitro, DCM-II inhibited (p < 0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediated via inhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.