Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.
Abstract:The issue of detecting objects bottoming on the sea floor is significant in various fields including civilian and military areas. The objective of this study is to investigate the logistic regression model to discriminate the target from the clutter and to verify the possibility of applying the model trained by the simulated data generated by the mathematical model to the real experimental data because it is not easy to obtain sufficient data in the underwater field. In the first stage of this study, when the clutter signal energy is so strong that the detection of a target is difficult, the logistic regression model is employed to distinguish the strong clutter signal and the target signal. Previous studies have found that if the clutter energy is larger, false detection occurs even for the various existing detection schemes. For this reason, the discrete Fourier transform (DFT) magnitude spectrum of acoustic signals received by active sonar is applied to train the model to distinguish whether the received signal contains a target signal or not. The goodness of fit of the model is verified in terms of receiver operation characteristic (ROC), area under ROC curve (AUC), and classification table. The detection performance of the proposed model is evaluated in terms of detection rate according to target to clutter ratio (TCR). Furthermore, the real experimental data are employed to test the proposed approach. When using the experimental data to test the model, the logistic regression model is trained by the simulated data that are generated based on the mathematical model for the backscattering of the cylindrical object. The mathematical model is developed according to the size of the cylinder used in the experiment. Since the information on the experimental environment including the sound speed, the sediment type and such is not available, once simulated data are generated under various conditions, valid simulated data are selected using 70% of the experiment cylinder data. The selected simulated data are used to train the model. Randomly selected experiment cylinder data, which are 70% of the total experimental cylinder data, and the rock measurement data are used to test the model. This process is repeatedly carried out 1000 times. The results show that the proposed method is effective under the circumstance where experimental data are not sufficient and a mathematical model is available for a target.
Abstract:In this paper, a scheme based on the time reversal technique is proposed to improve the detection performance for detecting a cylindrical object bottoming at the seafloor in shallow water. When the time reversal technique is applied to the response of the clutter with the strong time-varying characteristic of shallow water, it is difficult to obtain a high peak response. However, in the case where a cylindrical object is placed on the seafloor because the time-invariant property of the target response is stronger than the time-varying property of the reverberation by the clutters, the time reversal technique can be applied to enhance the target signal. In this paper, it is demonstrated that the peak due to the target that is contacted at the seabed becomes higher when applying the time reversal technique. The performance is investigated by using numerical computation of the probability of detection for various probabilities of false alarm and computer simulation.
In the underwater environment, high resolution can be achieved in the range direction by transmitting and receiving a signal of a particular band and/or waveform. The design of a transmit signal used in the active sonar is very important in order to detect a cylindrical object within a short distance less than 1 km, which is the detection distance of this paper. Designing a transmit signal optimal to a sonar requires appropriate selection of its center frequency and bandwidth, which allows the maximum detection distance of a sonar. In this paper, in terms of maximizing echo excess and signal to noise ratio (SNR), optimum frequency analysis is carried out under various conditions of diverse parameters. In addition, the investigation focused on the determinating a bandwidth is also performed for the purpose of satisfying the performance requirement of range resolution and azimuth resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.