Piecewise affine (PWA) feedback control laws defined on general polytopic partitions, as for instance obtained by explicit MPC, will often be prohibitively complex for fast systems. In this work we study the problem of approximating these high-complexity controllers by low-complexity PWA control laws defined on more regular partitions, facilitating faster on-line evaluation. The approach is based on the concept of input-to-state stability (ISS). In particular, the existence of an ISS Lyapunov function (LF) is exploited to obtain a priori conditions that guarantee asymptotic stability and constraint satisfaction of the approximate low-complexity controller. These conditions can be expressed as local semidefinite programs (SDPs) or linear programs (LPs), in case of 2-norm or 1, ∞-norm based ISS, respectively, and apply to PWA plants. In addition, as ISS is a prerequisite for our approximation method, we provide two tractable computational methods for deriving the necessary ISS inequalities from nominal stability. A numerical example is provided that illustrates the main results.The authors are with the Hybrid and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.