This study presents a new S-band-receiving phased-array antenna with a phase-deviation-minimized calibration method for the ground station of a low Earth orbit (LEO) satellite. The proposed antenna consists of 16 subarrays, 16 beamforming receiving RF modules (BF-RFMs), a power/control board, and a 16-way feed network. The subarray was achieved by joining two 8 × 1 arrays with a two-way power combiner. The 16-element antenna subarrays showed a gain of 16.1 dBi and a reflection coefficient of less than −10 dB from 2.12 GHz to 2.45 GHz. The BF-RFM, which consists of three low-noise amplifiers (LNAs), a power combiner, a phase shifter, and a digital attenuator, was designed and fabricated. The BF-RFMs were provided by the power/control board and showed a gain of 30.8 ± 0.8 dB, an amplitude root-mean-square (RMS) error from 0.25 dB to 0.28 dB, and a phase RMS error from 1.8° to 2.5° over the Rx frequency range. The arrangement procedures of the 16 BF-RFMs are presented to increase beam pointing accuracy at the desired angle. A commercial 16-way feed network was employed to combine all the output ports of the 16 BF-RFMs. The assembled antenna, which has dimensions of 1.58 m × 1.58 m × 0.2 m, was measured by partial and full scans in the near-field scanning system. The back-projected algorithm was employed to calibrate the antenna’s gain patterns in the partial scan. The implemented phased-array antenna had a gain greater than 28.14 dBi, sidelobe levels less than −17.1 dB, and beam pointing errors less than 0.07° over the beam pointing angle of −20°~+20°. Based on the implemented antenna system, we conducted a field test using KOMPSAT-5, which is actually operating in South Korea, in order to verify the performance of the low Earth orbit (LEO) satellite ground station system.
Automatic dependent surveillance-broadcast (ADS-B) is an advanced technology for air traffic monitoring. Using frequency of 1090 MHz, ADS-B transponder transmit aircraft identity, altitude, speed, position, and other information periodically to ground station. Nanosatellite Laboratory of Telkom University develops Tel-USat 2, a CubeSat with ADS-B signal receiver as the mission in purpose to expand the scope of its signal reception. This paper presents a rectangular truncated corner microstrip antenna for ADS-B receiver on a nanosatellite with center frequency of 1.090 MHz, Voltage Standing Wave Ratio (VSWR) = 1,15 with bandwidth of 11,5 MHz in the frequency range of 1.086 -1.097,5 MHz, unidirectional radiation pattern, circular polarization with axial ratio = 2,89 dB, antenna gain = 4,22 dBi and able to receive ADS-B signals from aircraft with furthest detected distances of 320,17 Km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.