The study aims to present the incidence of COVID-19 in pediatric patients undergoing renal replacement therapy (RRT) and to compare the severity and outcomes of the disease between the dialysis and kidney transplant (KTx) groups. This multicenter observational study was conducted between 1 April and 31 December 2020 in Istanbul. Members of the Istanbul branch of the Turkish Pediatric Nephrology Association were asked to report all confirmed cases of COVID-19 who were on RRT, as well as the number of prevalent RRT patients under the age of 20. A total of 46 confirmed cases of COVID-19 were reported from 12 centers, of which 17 were dialysis patients, and 29 were KTx recipients. Thus, the incidence rate of COVID-19 was 9.3% among dialysis patients and 9.2% among KTx recipients over a 9-month period in Istanbul. Twelve KTx recipients and three dialysis patients were asymptomatic ( p = 0.12). Most of the symptomatic patients in both the dialysis and KTx groups had a mild respiratory illness. Only two patients, one in each group, experienced a severe disease course, and only one hemodialysis patient had a critical illness that required mechanical ventilation. In the entire cohort, one hemodialysis patient with multiple comorbidities died. Conclusion : While most cases are asymptomatic or have a mild disease course, pediatric patients undergoing dialysis and a kidney transplant are at increased risk for COVID-19. What is Known: • In adult population, both dialysis patients and kidney transplant recipients are at increased risk for severe illness of COVID-19 and have higher mortality rate. • Children with kidney transplantation are not at increased risk for COVID-19 and most have mild disease course. • Data on children on dialysis are scarce. What is New: • Pediatric patients undergoing dialysis and kidney transplantation have an increased risk for COVID-19. • Most patients undergoing renal replacement therapy either on dialysis or transplanted develop asymptomatic or mild COVID-19 disease with a favorable outcome.
Background Compared with the general population, the immune response to COVID-19 mRNA vaccines is lower in adult kidney transplant recipients (KTRs). However, data is limited for pediatric KTRs. In this study, we aimed to assess humoral and cellular immune responses to the COVID-19 mRNA vaccine in pediatric KTRs. Methods This multicenter, prospective, case-control study included 63 KTRs (37 male, aged 12-21 years), 19 dialysis patients, and 19 controls. Humoral (anti-SARS-CoV2 IgG, neutralizing Ab (nAb)) and cellular (interferon-gamma release assay (IGRA)) immune responses were assessed at least one month after two doses of BNT162b2 mRNA vaccine. Results Among COVID-19 naïve KTRs (n = 46), 76.1% tested positive for anti-SARS-CoV-2 IgG, 54.3% for nAb, and 63% for IGRA. Serum levels of anti-SARS-CoV-2 IgG and nAb activity were significantly lower in KTRs compared to dialysis and control groups (p < 0.05 for all). Seropositivity in KTRs was independently associated with shorter transplant duration (p = 0.005), and higher eGFR (p = 0.007). IGRA titer was significantly lower than dialysis patients (p = 0.009). Twenty (43.4%) KTRs were positive for all immune parameters. Only four of 11 seronegative KTRs were IGRA-positive. COVID-19 recovered KTRs had significantly higher anti-SARS-CoV-2 IgG and nAb activity levels than COVID-19 naïve KTRs (p = 0.018 and p = 0.007, respectively). Conclusions The humoral and cellular immune responses to SARS-CoV-2 mRNA BNT162b2 vaccine are lower in pediatric KTRs compared to dialysis patients. Further prospective studies are required to demonstrate the clinical efficacy of the mRNA vaccine in KTRs. This prospective study was registered in ClinicalTrials.gov (NCT05465863, registered retrospectively at 20.07.2022).
When the production of reactive oxygen species (ROS) exceeds the capacity of antioxidant defences, a condition known as oxidative stress occurs and it has been implicated in many pathological conditions including asthma. Interaction of ROS with DNA may result in mutagenic oxidative base modifications such as 8-hydroxydeoxyguanosine (8-oxo-dGuo) and DNA strand breaks. Reduced glutathione (GSH) serves as a powerful antioxidant against harmful effects of ROS. The aim of this study was to describe DNA damage as level of DNA strand breaks and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites, which reflects oxidative DNA damage and GSH level in children with mild-to-moderate persistent asthma; and to examine the effect of antiasthmatic therapy on these DNA damage parameters and GSH level. Before and after 8 wk of antiasthmatic therapy blood samples were taken, DNA strand breaks and Fpg-sensitive sites in peripheral leukocytes were determined by comet assay, GSH level of whole blood was measured by spectrophotometric method. DNA strand breaks and Fpg-sensitive sites in the asthma group were found to be increased as compared with control group. GSH level in the asthma group was not significantly different from those in the control group. Levels of strand breaks, Fpg-sensitive sites and GSH were found to be decreased in the asthma group after the treatment. In conclusion, oxidative DNA damage (strand breaks and Fpg-sensitive sites) is at a high level in children with asthma. DNA damage parameters and GSH level were found to be decreased after therapy. Our findings imply that antiasthmatic therapy including glucocorticosteroids not only controls asthma but also decreases mutation risk in children with asthma bronchiale.
Iron deficiency is frequently associated with anemia. Iron is a transition-metal ion, and it can induce free radical formation, which leads to formation of various lesions in DNA, proteins, and lipids. The aim of this study was to investigate baseline oxidative DNA damage and to clarify the role of the administration of a therapeutic dose of iron on DNA oxidation in children with iron deficiency anemia (IDA). Twenty-seven children with IDA and 20 healthy children were enrolled in the study. Leukocyte DNA damage (strand breaks and Fpg-sensitive sites) was assessed using comet assay before and after 12 weeks of daily iron administration. Before the iron administration, the frequency of DNA strand breaks in the children with IDA was found to be lower than those in the control group (P < 0.05), but there was not a significant difference for frequency of Fpg-sensitive sites. After 12 weeks of iron administration, the frequency of both DNA strand breaks and Fpg-sensitive sites were found to be increased (P < 0.01). No significant association was determined between DNA damage parameters and hemoglobin, hematocrit, serum iron, total iron binding capacity, and ferritin. In conclusion, basal level of DNA strand breaks is at a low level in children with IDA. After iron administration, DNA strand breaks and Fpg-sensitive sites, which represent oxidatively damaged DNA, increased. However, this increase was unrelated to serum level of iron and ferritin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.