The wickless heat pipe (theroosyphon) is ordinate of three divisions the condenser, evaporator and insulated region (adiabatic region). In this work, the condenser and evaporator regions are made of copper tube with a length of 300 mm, for each an exterior diameter of 28.2 mm and an interior diameter of 26.4 mm. While the insulated region has a length of 400 mm and an exterior diameter of 28.2 mm. The evaporator region of the heat pipe bounded by a coiled heat source that represented the heat source. The condenser is encapsulated in a plastic cylinder to accommodate the flow of the cooling water. Thermosyphon has been filled by R- 134a working fluid. The effect of heat input, filling ratio and sink temperature were all tested and measurement. The results showed that the heat transfer performance increases when the applied energy to the evaporator increases while the total heat transfer efficiency of the heat pipe increases the gradient temperature between the medium of the evaporator and the condenser increases. The optimum fill rate is 119 % (250g), the sink temperature is 20°C, and it has been found to be suitable for optimum heat pipe performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.