Up to a third of North Americans over 16 years old report using cannabis in the prior month, most commonly through inhalation. Animal models that reflect human cannabis consumption are critical to study its impacts on brain and behaviour. Nevertheless, most animal studies to date examine effects of cannabis through injection of delta-9-tetrahydrocannabinol (THC; primary psychoactive component of cannabis). THC injections produce markedly different physiological and behavioural effects than inhalation, likely due to distinctive pharmacokinetics of each administration route. The current study directly examined if administration route (injection versus inhalation), with dosing being matched on peak THC blood levels, alters the metabolism of THC, and the central accumulation of THC and its metabolites over time. Adult male and female Sprague-Dawley rats received either a single intraperitoneal injection of THC (2.5 mg/kg) or a single (15 min) session of inhaled exposure to THC distillate (100 mg/mL) vapour. Blood and brains were collected at 15, 30, 60, 90 and 240 minutes post-exposure for analysis of THC and metabolites through mass spectrometry-liquid chromatography. Inhalation results in immediate hypothermia, whereas injection results in delayed hypothermia. Despite achieving comparable peak concentrations of blood THC in both groups, our results indicate higher initial brain THC concentration following inhalation, whereas injection resulted in dramatically higher 11-OH-THC concentrations, a potent THC metabolite, in blood and brain that increased over time. Our results provide evidence that THC and its metabolites exhibit different pharmacokinetic profiles following inhalation versus injection, which could have significant impacts for data interpretation and generalizability. Accordingly, we suggest that translational work in the realm of THC and cannabis strongly consider using inhalation models over those that employ injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.