Determining Secondary Structure Elements (SSEs) for any protein is crucial as an intermediate step for experimental tertiary structure determination. SSEs are identified using popular tools such as DSSP and STRIDE. These tools use atomic information to locate hydrogen bonds to identify SSEs. When some spatial atomic details are missing, locating SSEs becomes a hinder. To address the problem, when some atomic information is missing, three approaches for classifying SSE types using Cα atoms in protein chains were developed: (1) a mathematical approach, (2) a deep learning approach, and (3) an ensemble of five machine learning models. The proposed methods were compared against each other and with a state-of-the-art approach, PCASSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.