Objectives To evaluate the efficiency of injectable platelet-rich fibrin (i-PRF) in accelerating canine tooth movement and to examine levels of the matrix metalloproteinase-8 (MMP-8), interleukin-1β (IL-1β), receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand (RANKL), and osteoprotegerin (OPG) in the gingival crevicular fluid during orthodontic treatment. Materials and Methods Twenty patients (mean age = 21.4 ± 2.9 years) with Class II Division 1 malocclusion were included in a split-mouth study. The treatment plan for all patients was extraction of maxillary first premolars followed by canine distalization with closed-coil springs using 150 g of force on each side. The study group received i-PRF two times, with a 2-week interval, on one side of the maxilla. The contralateral side served as the control and did not receive i-PRF. Maxillary canine tooth movement was measured at five time points (T1–T5) on each side. Also, the activity of inflammatory cytokines was evaluated at three time points in the gingival crevicular fluid samples. Results There was a significant difference in canine tooth movement between the two groups (P < .001). i-PRF significantly increased the rate of tooth movement, and stimulation in the levels of inflammatory cytokines supported this result (P < .001). The levels of cytokines changed in both groups between T1 and T2. The IL-1β, MMP8, and RANKL values were significantly increased in the study group compared with the control group, while the OPG values were significantly decreased. Conclusions i-PRF-facilitated orthodontics is an effective and safe treatment modality to accelerate tooth movement, and this method can help shorten orthodontic treatment duration.
NGAL could predict mortality in patients with HRS independent of other commonly used risk factors.
With the lack of regional differences and the well-standardized status of test results, the RIs derived from this nationwide study can be used for the entire Turkish population.
Background:Methicillin resistance is a serious health concern since it has spread among Staphylococcus aureus and coagulase-negative Staphylococci (CoNS) that are frequent community and nosocomial pathogens worldwide. Methicillin-resistant strains are often resistant to other classes of antibiotics, making their treatment difficult. Nigella sativa oil is known to be active against Gram-positive cocci, yet its in vitro cytotoxicity is rarely investigated, is a proper and powerful candidate for treatment of methicillin-resistant isolates.Objectives:The aim of this study is to evaluate the in vitro antibacterial activity and cytotoxicity effect of N. sativa oil.Materials and Methods:The minimal inhibitory concentrations (MICs) of N. sativa oil were determined by broth microdilution method against four different American Type Culture Collection strains, 45 clinical isolates of methicillin-resistant S. aureus (MRSA), and 77 methicillin-resistant CoNS (MRCoNS). The effects of different dilutions (0.25 μg/mL, 0.5 μg/mL, and 1 μg/mL) of N. sativa oil on the proliferation of gingival fibroblasts were evaluated.Results:The MIC values of N. sativa oil against clinical isolates of Staphylococci were between <0.25 μg/mL and 1.0 μg/mL. Compared to the control group, there was no cytotoxic effect on the proliferation of the gingival fibroblasts.Conclusion:In the present study, the oil of N. sativa was very active against MRSA and MRCoNS and had no in vitro cytotoxicity at relevant concentrations. These findings emphasize that there is a requirement for further clinical trials on N. sativa oil for “safe” medical management of infections caused by methicillin-resistant Staphylococci.SUMMARY The minimal inhibitory concentration (MIC) values of Nigella sativa oil against Staphylococcus aureus American Type Culture Collection (ATCC) 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 standard strains were 0.5 μg/mL, 2 μg/mL, 64 μg/mL, and 64 μg/mL, respectivelyThe N. sativa oil showed an excellent antibacterial activity against clinical isolates of methicillin-resistant S. aureus and methicillin-resistant coagulase-negative Staphylococci with very low MIC range of <0.25–1.0 µg/mLThe N. sativa oil exhibited no cytotoxic effect on the proliferation of the gingival fibroblasts. Abbreviation used: ATCC: American Type Culture Collection; CLSI: Clinical and Laboratory Standards Institute; CoNS: Coagulase-negative Staphylococci; DMEM: Dulbecco's modified Eagle's medium; DMSO: Dimethyl sulfoxide; FBS: Fetal bovine serum; HGF: Human gingival fibroblast; MIC: Minimal inhibitory concentration; MRCoNS: Methicillin-resistant CoNS; MRSA: Methicillin-resistant S. aureus
The aim of this study is to investigate the effects of epilepsy, valproic acid and oxcarbazepine on nitric oxide levels, lipid peroxidation and xanthine oxidase levels in newly diagnosed epileptic children and healthy controls. A total of 49 patients with newly diagnosed idiopathic epilepsy and 15 healthy children were enrolled in this study. Of these 49 patients, 16 children were treated with valproate and 16 treated with oxcarbazepine. Nitric oxide, malondialdehyde and xanthine oxidase levels prior to antiepileptic drug therapy were measured in the serum. Blood samples were drawn before antiepileptic drug therapy and after 3 and 6 months of the antiepileptic drug treatment. Nitric oxide levels were statistically higher in the newly diagnosed epileptic patients. In oxcarbazepine group, the nitric oxide and malondialdehyde levels were found to be decreased. No statistically significant differences were noted in nitric oxide, malondialdehyde and xanthine oxidase levels in valproic acid treated group. Oxcarbazepine which is a frequently used new antiepileptic drug in childhood epilepsy may modify nitric oxide levels and lipid peroxidation. These results suggest that decreased lipid peroxidation would play a role in the mechanism of antiepileptic effects by oxcarbazepine treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.