A permanent magnet direct current (PMDC) motor centrifugal pump is intended to be used as the water supply unit in a feedback linearization based coupled-tank water meter testing system. Flow rate generated by the pump corresponds to the input variable for implementing the input-output feedback linearization to this single-input-single-output (SISO) system. The pump motor is driven by an Arm Cortex M7 based microcontroller applying the pulse-width modulation (PWM) strategy at various frequencies and pwm methods. It is aimed to determine a suitable PWM frequency and driving method in order to provide a stable flow rate at the desired duty cycle values. An H-Bridge driver integrated circuit (L298N) is used in both fast decay and slow decay modes for driving the pump motor. Flow rate measurements are carried out at 4 range of frequencies between 100 Hz and 20 kHz for each mode. Fast decay mode in low pwm frequency (100Hz) results in higher deviations at the steady-state flow rate. However, slow decay mode provides a faster reduction in motor speed despite the slower current decay, which improves the flow rate stability and minimize deviations at constant pwm duty cycle values. High pwm switching frequencies increase the energy losses resulting in a lower driving voltage range, which reduces the effective range of selection for pwm duty cycle setting of flow rate adjustment. 1 kHz PWM frequency combined with the slow-decay driving mode achieves good performance in terms of linear regression and wider range for pwm duty cycle to flow rate transformation.
Bu makale, elektronik akış ölçüm cihazları için ultrasonik piezoelektrik dönüştürücüler üzerindeki sıcaklık etkilerinin bir değerlendirmesini sunar. Dönüştürücüler, çift yönlü özelliklerinden dolayı elektrik sinyallerine karşı ultrasonik dalga ve ultrasonik dalgalara karşı elektrik sinyalleri üretir. Fiziksel ortamın sıcaklık dinamiği, ultrasonik dönüştürücülerin elektrik dinamiklerini etkileyen en önemli parametrelerden biridir. Sıcaklık değişimi kaynaklı yanlış sensör okumaları, farklı sıcaklıklar için akış ölçüm işlemi sırasında kalibrasyon hatalarına neden olur. Bu nedenle, dönüştürücü özellikleri üzerindeki sıcaklık etkilerini belirlemek ve genelleştirilmiş bir çözüm oluşturmak için bir test prosedürü ve veri toplama süreci geliştirilmiştir. Başlangıçta, bir akış ölçer gövdesi üzerinde karşılıklı olarak iki özdeş dönüştürücü konumlandırılmıştır. İkinci olarak, gövdeler, farklı akışlar için sinyal ölçümleri almak üzere bir test masasına yerleştirilmiştir. Ultrasonik sinyal ölçümlerini toplamak için bir kablosuz iletişim veri toplama kartı kullanılmıştır. Test işlemi 5 farklı sıcaklık ve 13 debi için tekrarlanmıştır. Veri toplama sonucu elde edilen veri seti MATLAB ortamında değerlendirilip, çalışma koşulları belirlenmiştir ve makine öğrenmesi algoritmalarına dayalı bir sıcaklık etkisi kompenzasyon modeli önerilmiştir. Bu yöntem, dönüştürücü elemanlarının zaman ekseni bilgilerini dikkate almaktadır. Gerçek akış hızını tahmin etmek için her deney sıcaklık değeri ve Uçuş Süresi (TOF) sinyallerinin ortalama değerleri dikkate alınmaktadır. Böylece, sıcaklık değişimi ve akış ölçümü arasındaki ilişkiyi oluşturmak için makine öğrenmesi algoritmalarından doğrusal regresyon, destek vektör regresyonu (SVR), Gaussian süreç regresyonu (GPR) ve yapay sinir ağları (YSA) kullanılmıştır. Önerilen modelin kompenzasyon performansı 𝑅2, ortalama kare-kök hata (𝑅𝑀𝑆𝐸), ortalama mutlak hata (𝑀𝐴𝐸) ve ortalama kare hata (𝑀𝑆𝐸), gibi hata metriklerinin hesaplanması ile incelenmiştir. Sonuçlara göre, YSA tabanlı kompenzasyon algoritmasının 𝑅2 = 0.95 metriği ile en iyi sonucu verdiği görülmüştür.
Enstrümentasyon ve ölçüm gelişen endüstride oldukça önemli bir alan haline gelmiştir. Bu gelişim ölçüm hatalarının eniyilenmesi gibi gereklilikler ortaya çıkartmaktadır. Akış ve tüketimin doğru ölçümü, yanlış faturalandırma ve sular idaresinde meydana gelebilecek karışıklıkları önlemede önemli bir süreçtir. Bu çalışmada, elektronik akıllı sayaçlarda sıvı veya gaz akış hızı ölçüm uygulamaları için ultrasonik uçuş süresi (TOF) hesaplama algoritmalarının değerlendirilmesi sunulmaktadır. Transdüserler, bir piezoelektrik malzeme olarak akış ölçüm endüstrisinde kullanılır ve basınca karşı ultrasonik ses dalgaları üretiler. Bir akış ortamında karşılıklı olarak yerleştirilmiş transdüserler, her iki akış yönünde ultrasonik ses dagaları üretmek amacı ile tetiklenir. Transdüserler arası kısa mesafe ve akış ortamında sesin yüksek hızı nedeniyle, TOF hesaplaması zorlu bir süreç haline gelmektedir. Bir transdüserin eş değer devre modeli MATLAB/Simulink ortamında nümerik olarak uygulanmakta ve transdüserler arası geçiş dalgaları olan ve tetiklenme sırasına göre isimlendirilen yukarı/aşağı akış sinyalleri elde edilmektedir. İlk olarak, tetiklenmiş bir transdüserin davranışı benzetim ortamında incelenir ve gerçek dünya koşullarını taklit etmek için ölçüm gürültüsünü benzeten bir sinyal kullanılır. Literatürde verilen problem tanımları ve önerilen algoritmalar incelenir ve aday TOF ölçüm algoritmaları seçilir. Seçilen her yöntem gerçeklenir. Daha sonra elde edilen geçiş dalgaları, her sıfır geçiş noktasında TOF değerini hesaplamak için geleneksel yöntem ile kullanılır. Ölçüm performansı arttırmak için çapraz korelasyon tabanlı bir TOF tahmin süreci metodu önerilir ve sonuçlar geleneksel yöntem tabanlı ölçümler ile karşılaştırılır. Çalışmanın gelecekteki olası yönleri paylaşılmıştır.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.