The texture properties of formulation are an important parameter in optimization of topical formulations. These properties will affect applicability of the formulation at the administration site and therapy outcome. Our aim was to develop a fast and reliable method to characterize texture properties of hydrogels, namely cohesiveness, adhesiveness, and hardness. During the method development, we realized that the measurements setup needed to be adjusted for each hydrogel type, namely Carbopol, chitosan, and poloxamer hydrogels. The influence of the polymer concentration, pH, and incorporation of additives such as glycerol, drug solution, or liposomes on the texture properties, as determined by Texture Analyzer, was evaluated. In addition, the new method was applied to determine the changes during the accelerated stability testing. While Carbopol and poloxamer gels showed a linear relationship between the polymer concentration and texture properties, for low molecular weight chitosan gels the properties increased in exponential manner with increasing polymer concentration. The effect of incorporated liposomes on the gel properties was found to be dependent on the type of hydrogel. The hydrogel hardness was affected by the temperature as seen in accelerated stability testing. The method represents a valuable tool in pharmaceutical and cosmetics formulation development. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.