Generative Adversarial Networks (GANs) have recently attracted considerable attention in the AI community due to their ability to generate high-quality data of significant statistical resemblance to real data. Fundamentally, GAN is a game between two neural networks trained in an adversarial manner to reach a zero-sum Nash equilibrium profile. Despite the improvement accomplished in GANs in the last few years, several issues remain to be solved. This paper reviews the literature on the game-theoretic aspects of GANs and addresses how game theory models can address specific challenges of generative models and improve the GAN's performance. We first present some preliminaries, including the basic GAN model and some game theory background. We then present taxonomy to classify state-of-the-art solutions into three main categories: modified game models, modified architectures, Games of GANs and modified learning methods. The classification is based on modifications made to the basic GAN model by proposed game-theoretic approaches in the literature. We then explore the objectives of each category and discuss recent works in each class. Finally, we discuss the remaining challenges in this field and present future research directions.
Generative Adversarial Networks (GANs) have recently attracted considerable attention in the AI community due to their ability to generate high-quality data of significant statistical resemblance to real data. Fundamentally, GAN is a game between two neural networks trained in an adversarial manner to reach a zero-sum Nash equilibrium profile. Despite the improvement accomplished in GANs in the last few years, several issues remain to be solved. This paper reviews the literature on the game-theoretic aspects of GANs and addresses how game theory models can address specific challenges of generative models and improve the GAN's performance. We first present some preliminaries, including the basic GAN model and some game theory background. We then present taxonomy to classify state-of-the-art solutions into three main categories: modified game models, modified architectures, and modified learning methods. The classification is based on modifications made to the basic GAN model by proposed game-theoretic approaches in the literature. We then explore the objectives of each category and discuss recent works in each class. Finally, we discuss the remaining challenges in this field and present future research directions.
Generative Adversarial Network, as a promising research direction in the AI community, recently attracts considerable attention due to its ability to generating high-quality realistic data. GANs are a competing game between two neural networks trained in an adversarial manner to reach a Nash equilibrium. Despite the improvement accomplished in GANs in the last years, there remain several issues to solve. In this way, how to tackle these issues and make advances leads to rising research interests. This paper reviews literature that leverages the game theory in GANs and addresses how game models can relieve specific generative models' challenges and improve the GAN's performance. In particular, we firstly review some preliminaries, including the basic GAN model and some game theory backgrounds. After that, we present our taxonomy to summarize the state-of-the-art solutions into three significant categories: modified game model, modified architecture, and modified learning method. The classification is based on the modifications made in the basic model by the proposed approaches from the game-theoretic perspective. We further classify each category into several subcategories. Following the proposed taxonomy, we explore the main objective of each class and review the recent work in each group. Finally, we discuss the remaining challenges in this field and present the potential future research topics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.