Energy and exergy efficiencies of the wheat and rye bread and hamburger bun making processes are assessed based on data from Turkey and Germany. Amount of the land required to produce the same amount of wheat in Turkey is 3.34 times of that required in Germany; this ratio is 2.30 for the rye grain. These results show that the efficiency of the conversion of the solar energy into the grain mass is low in Turkey. Cumulative degree of perfection (CDP) for the wheat and the rye grain production is 3.73 and 4.96 in Turkey, and 11.26 and 10.46 in Germany. Specific energy utilization for rye bread production is almost the same in Turkey and Germany; but it is 12 % higher in Turkey for wheat bread and hamburger bun making. Hamburger bun production requires the maximum energy utilization due to the higher weight loss in baking. The rye bread production process requires the minimum energy utilization due to the lower energy input in the agriculture and higher efficiency in the flour production. The maximum exergy destructions occur during the milling and the baking steps.Keywords: Bread making, energy efficiency, exergy efficiency, carbon dioxide emission Correspondence: mozilgen@yeditepe.edu.tr 2
Highlights• Agriculture determines the energy and exergy efficiency of bread making• Conversion efficiency of the solar energy into grain mass is lower in Turkey• The smallest energy and exergy is needed for the rye bread making• The largest energy and exergy is needed for the hamburger bun making• Energy efficiency per mass of bread production is 12 % higher in Germany 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.